
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 7705

GraphTunnel: Robust DNS Tunnel Detection Based
on DNS Recursive Resolution Graph

Guangyuan Gao, Weina Niu , Senior Member, IEEE, Jiacheng Gong , Graduate Student Member, IEEE,
Dujuan Gu, Song Li, Member, IEEE, Mingxue Zhang , and Xiaosong Zhang

Abstract— DNS tunnels, due to their versatility and conceal-
ment, have become a preferred method for attackers to execute
Command and Control (C&C) attacks, posing a significant
security threat to terminal devices. Therefore, the efficient and
accurate detection of DNS tunnels is important in reducing the
economic losses and privacy risks faced by both enterprises
and individuals. Despite notable advancements in the research
of intelligent detection of DNS tunnels, existing model-based
approaches predominantly concentrate on the surface-level fea-
tures of domain names or packet payloads. This narrow focus
leads to low detection accuracy when dealing with unknown DNS
tunnel attacks and traffic from wildcard DNS. Furthermore, these
methods struggle with accurately identifying DNS tunneling tools,
complicating the task of swiftly locating and mitigating malware
for analysts. This paper proposes GraphTunnel, a framework
based on graph neural networks for detecting DNS tunnels and
identifying tunneling tools. It delves into the correlations among
DNS resolutions to construct paths that represent the recursive
resolution process of DNS. By using central nodes that denote the
gateways, these paths are connected and transformed into graph
structures. Concurrently, it employs GraphSage to aggregate
the features of nodes and their edges in the graph, enabling
effective detection of DNS tunnels. Additionally, GraphTunnel
utilizes the G2M algorithm to capture the statistical features
of nodes in the graph and maps them into grayscale images,
which are then processed by a CNN for multi-class identification
of DNS tunneling tools. Experimental results demonstrate that
in non-wildcard DNS scenarios, GraphTunnel achieves a 100%

Manuscript received 11 January 2024; revised 2 June 2024 and
1 August 2024; accepted 6 August 2024. Date of publication 14 August 2024;
date of current version 22 August 2024. This work was supported in part
by CCF-NSFOCUS “Kunpeng” Research Fund under Grant CCF-NSFOCUS
2023013, in part by the National Science Foundation of China under Grant
62372086 and Grant U2336204, in part by Sichuan Natural Science Foun-
dation under Grant 24ZNSFSC0038, and in part by the Financial Support
for Outstanding Talents Training Fund in Shenzhen. The associate editor
coordinating the review of this article and approving it for publication was
Dr. Daisuke Mashima. (Corresponding author: Weina Niu.)

Guangyuan Gao and Jiacheng Gong are with the School of Computer
Science and Engineering, University of Electronic Science and Technol-
ogy of China, Chengdu 611731, China (e-mail: ggyshuaige@gmail.com;
gongjc.uestc@gmail.com).

Weina Niu and Xiaosong Zhang are with the School of Computer Science
and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China, and also with the Institute for Advanced Study,
University of Electronic Science and Technology of China, Shenzhen 518110,
China (e-mail: vinusniu@uestc.edu.cn; johnsonzxs@uestc.edu.cn).

Dujuan Gu is with NSFOCUS Technologies Group Company Ltd., Beijing
100089, China (e-mail: gudujuan@nsfocus.com).

Song Li and Mingxue Zhang are with the State Key Laboratory
of Blockchain and Data Security and the School of Cyber Science
and Technology, Zhejiang University, Hangzhou 310058, China (e-mail:
songl@zju.edu.cn; mxzhang97@zju.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3443596

accuracy in DNS tunnel detection, encompassing unknown DNS
tunnels. Even in high false-positive environments caused by
wildcard DNS, GraphTunnel maintains an F1-Score of 99.78%.
Moreover, GraphTunnel can identify DNS tunneling tools with an
accuracy rate exceeding 98.57%, enhancing the rapid mitigation
capabilities of emergency responders in dealing with malicious
DNS tunnels.

Index Terms— DNS tunnel detection, unknown DNS tun-
nels, wildcard DNS, tunneling tool identification, graph neural
networks.

I. INTRODUCTION

DNS, as a fundamental internet infrastructure, facilitates
the translation of domain names into IP addresses for

user access to resources. However, the omnipresence and
inherent stealth of DNS render it susceptible to exploitation
by hackers for DNS tunneling attacks. A study conducted by
the National Institute of Standards and Technology (NIST)
[1] revealed that in 2021, an astounding 72% of organizations
globally were subjected to DNS attacks. These attacks encom-
passed Distributed Denial of Service (DDoS) (46%), DNS
tunneling (35%), and cache poisoning (33%). Furthermore, the
“Global DNS Threat Report” disseminated by EfficientIP in
2022 [2] disclosed that 88% of companies encountered DNS
attacks, involving tactics such as DNS phishing, DNS tun-
neling, and DNS-based malware. Among these DNS attacks,
those utilizing DNS tunneling techniques constituted 28%,
marking a 4% surge compared to the previous year. On aver-
age, these attacks precipitated a financial loss of $942,000,
with 24% of enterprises experiencing data exfiltration, impos-
ing severe consequences on both businesses and individuals.

In response to the security threats posed by DNS tunneling,
numerous researchers are currently engaged in studies to detect
DNS tunnels promptly [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

Current DNS tunnel detection methods are primarily cat-
egorized into rule-based and model-based approaches [3].
Rule-based methods rapidly identify tunnel traffic by matching
packet signatures or comparing specific feature thresholds.
However, these methods rely on rule sets generated from
specific tunneling software and may fail to effectively detect
software deliberately modified by attackers. In contrast,
model-based approaches learn features from large-scale raw
traffic data, capturing distinctions between benign DNS traffic
and tunnel traffic. Leveraging the characteristics of binary

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3235-3463
https://orcid.org/0009-0000-7970-9968
https://orcid.org/0000-0001-8863-8751
https://orcid.org/0000-0001-9886-1412


7706 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

classification algorithms, these methods train highly accurate
detection models, offering flexibility to adapt to changes in dif-
ferent tunneling software. Nevertheless, existing model-based
methods encounter the following challenges:

C1: Suboptimal Accuracy in Detecting Unknown DNS
Tunnels and Wildcard DNS. Existing model-based detec-
tion methods typically focus solely on surface-level features
of domain names or packet payloads, lacking attention
to the behavioral structure characteristics of the establish-
ment and attack processes of DNS tunnels. This approach
exhibits reduced detection performance when confronted with
unknown DNS tunnel attacks and wildcard DNS.

• Multiple existing studies on DNS tunnel detection do
not explicitly address the proble of traffic generated
by unknown DNS tunneling tools. In studies that do
focus on detecting unknown samples, such as [21] and
[20], a “leave-one-out” method is employed to partition
the dataset. However, these studies have not conducted
detection experiments specifically on traffic generated by
a completely unknown DNS tunneling tool.

• Wildcard DNS is a technique that permits subdomains
to utilize the wildcard * for ambiguous matching. This
characteristic endows subdomains with flexibility in terms
of length and character arrangement, closely resembling
the domain names employed by DNS tunnels for data
transmission. When a DNS tunnel detection system
employs surface-level domain features such as subdomain
length and information entropy for detection, it can easily
engender confusion between legitimate wildcard domains
and potential DNS tunnels, thereby precipitating instances
of false positives.

C2: Suboptimal Accuracy in Distinguishing DNS Tun-
neling Tools. Despite the utilization of diverse encryption
techniques by recognized DNS tunneling tools, there is a
notable overlap in certain features such as domain length,
information entropy, and packet size. This similarity impedes
the model’s ability to discern the nuanced differential features
among various tools, thereby leading to diminished accuracy
in the multi-classification task pertaining to DNS tunneling
tools.

To address the aforementioned challenges, we propose
GraphTunnel, a framework based on graph neural networks
designed for real-time detection of DNS tunnels and identifica-
tion of tunneling tools. Specifically, to tackle C1, GraphTunnel
filters DNS traffic from network traffic and constructs paths
representing the DNS recursive resolution process. The nodes
in each path symbolize authoritative domains, with edges
mapping correlations among these domains. To enhance the
modeling of inbound and outbound traffic dynamics during
DNS resolution, a central node is used to denote the gateway.
This central node effectively connects individual paths, thus
obtaining a comprehensive graph representation. Subsequently,
GraphTunnel employs the GraphSAGE [22] algorithm to
aggregate node and edge features within the graph. In this way,
GraphTunnel fits the DNS recursive resolution process well
and extracts unique spatio-temporal features from it, thereby

maintaining high robustness even in the scenarios of unknown
DNS tunnels and wildcard DNS. To address C2, GraphTunnel
utilizes the G2M algorithm to statistically learn the node fea-
tures within the graph and convert them into grayscale images.
A convolutional neural network (CNN) is then applied to
process the image, resulting in a multi-classification model for
DNS tunneling tools. By this method, GraphTunnel effectively
utilizes the statistical information and the capability of CNN,
and gradually highlights the differences in node features within
the graph, thus achieving high accuracy in distinguishing DNS
tunneling tools.

In summary, the primary contributions of this paper are as
follows:
• We constructed DNS recursive resolution graphs and

employed graph neural networks to detect DNS tun-
nels by analyzing the different behavioral graph patterns
between normal DNS resolution and DNS tunnel resolu-
tion.

• We developed the G2M algorithm to improve the
multi-classification of DNS tunneling tools by statistically
analyzing node feature vectors and organizing them into a
grayscale image matrix for effective convolutional aggre-
gation.

• Experimental results demonstrate that GraphTunnel
achieves an F1 Score exceeding 99.78% in DNS tun-
nel detection, maintaining high robustness even against
unknown DNS tunnels and wildcard DNS scenar-
ios. Furthermore, it achieves high accuracy exceed-
ing 98% in the multi-classification of DNS tunneling
tools.

The structure of this paper is as follows: Section II furnishes
an overview of current endeavors in detecting DNS tunnels.
Section III delves into the architecture of the GraphTunnel
system, elucidating the composition and interrelationships of
each module. In Section IV, we expound on the experimen-
tal environment settings and dataset collection, showcasing
the results of the experimental evaluation. The discussion
of research limitations is succinctly presented in Section V,
culminating in the overall conclusion in Section VI.

II. RELATED WORK

Wang et al. [3] conduct a comprehensive analysis of nearly
all detection methods developed from 2006 to 2020, categoriz-
ing DNS tunnel detection methods into two types: rule-based
detection and model-based detection. Building on this, we ana-
lyze some recent studies based on several indicators. For
instance, methods with an accuracy rate exceeding 90%
are classified as HA (High-Accuracy), those encompassing
datasets from five or more tunneling tools are labeled as ETC
(Extensive Tool Coverage), and those capable of detecting
DNS tunnels on different platforms are categorized as CP
(Cross-Platform). Additionally, we introduce specific metrics
to assess the capabilities of these methods, including UDT
(Unknown DNS Tunnel), WD (Wildcard DNS), TTI (Tunnel-
ing Tool Identification), and RM (Real-time Monitoring). The
details are outlined in Table I.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7707

TABLE I
COMPARISON OF EXISTING METHODS FOR DNS TUNNELING DETECTION

A. Rule-Based Detection

Rule-based detection can be further divided into two cat-
egories: signature-based methods and threshold-based meth-
ods [3].

1 Signature-Based Method: The signature-based method
detects DNS tunnels through the matching of specific signa-
tures. These signatures are typically derived from professionals
analyzing and extracting static features from traffic packets.
For instance, the traffic packet of dnscat2 [23] will contain
the content “dnscat”.

Sheridan and Keane [4] employ snort with Iodine feature
rules to detect anomalous background traffic generated by
Iodine through traffic signature analysis and baseline compar-
ison. However, this method struggles to detect more complex
covert channels.

Similarly, Adiwal et al. [5] propose a DNS intrusion detec-
tion system (DID) based on snort. This approach extracts
corresponding features and generates signatures for ids rules
by simulating DNS tunnel attacks, DNS amplification attacks,
and DNS DoS attacks. Nevertheless, it is confined to known
attack types and cannot effectively cope with new types of
DNS attacks.

Salat et al. [6] propose a method for detecting DNS tunnel
attacks in cloud environments based on elastic stack. This
approach analyzes DNS traffic data in the cloud environment
and formulates rules for detection using suricata. However,
it tends to increase the false positive rate during cloud
migration.

Ghosh et al. [7] propose a multi-stage DNS tunnel detection
technique. In the second stage, the method detects SSH
handshakes in DNS tunnel traffic, analyzes data streams to
retrieve base64 encoded SSH signatures, and formulates rules
for matching detection. However, the signatures in this method
can only match known DNS tunnel traffic in specific scenarios.

Signature-based methodologies swiftly discern suspected
tunnel traffic by matching distinct content within packets,
providing effective detection of known DNS tunnels. However,

they are contingent on signature rule sets generated for spe-
cific tunnel software, making them prone to false negatives
when facing customized or modified tunneling tools. Further-
more, adversaries can deliberately alter or obfuscate signatures
within packets, rendering the signature-based approach inef-
fective.

2 Threshold-Based Approach: This approach detects DNS
tunnels by scrutinizing specific features, such as the quantity
of distinct hostnames and the cache hit rate. It hinges upon
the comparative analysis of threshold values associated with
these features, facilitating the differentiation between benign
and tunneling DNS traffic.

Ozery et al. [8] propose an information-based real-time
detection method called ibHH. It is deployed on DNS servers,
capturing timestamps and domain names transmitted to reg-
istered domains to calculate information volume. When the
volume exceeds a set threshold, it flags the domain as
malicious. However, the method is still susceptible to false
positives due to the impact of wildcard DNS resolution.

Sani and Setiawan [9] investigate a method for detecting
DNS tunnels using elasticsearch. The approach leverages
watcher to assess the diversity of hostnames, and flags the
traffic as a tunnel if it exceeds 300. However, the method
adopts an empirically derived threshold, which necessitates
adaptation to different environments.

Ellens et al. [10] detect tunnels by analyzing traffic features,
such as the byte count of each flow, and applying statistical
detection methods. They set corresponding thresholds for
different features, but the false positive rate is high.

Paxson et al. [11] devise a principled method. This method
employs a configurable threshold to constrain the information
transfer through DNS. The core concept involves utilizing
lossless compression for estimating the information entropy
of the entire DNS query flow to obtain an upper bound on the
information quantity. However, the approach is susceptible to
traffic splitting across multiple domains by the attacker.

Ishikura et al. [12] propose a method based on DNS cache
properties. This approach leverages the characteristics of cache

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7708 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

hits or misses generated on cache servers, introducing features
such as cache hit rate, access hit rate, and access miss count.
It generates rule filters and LSTM filters for tunnel detection.

The threshold-based detection method of DNS tunnels offers
the advantage of adjustable sensitivity by site-specific security
policies, thereby providing configurable tunnel traffic detec-
tion. However, this method faces challenges in dealing with
low-traffic tunnels, which can evade detection by maintaining
traffic below the threshold. Furthermore, experiential judgment
is necessary for setting the threshold. An excessively high
threshold may lead to under-detection, while an overly low
threshold may increase the false positive rate. The threshold
method is also susceptible to evasion tactics employed by
attackers, such as distributing traffic across multiple domains.

B. Model-Based Detection

Model-based detection involves learning crucial features
extracted from extensive network data packets, including
packet size, TTL (Time to Live), DNS query type, and DNS
request domain name length. These features are then utilized
in training machine learning or deep learning algorithms to
construct robust detection models.

Ibraheemi et al. [13] propose a method of hybrid genetic
algorithm and support vector machine. This method simulates
the utilization of four protocols such as HTTPS and FTP.
By capturing traffic during operation and applying a genetic
algorithm for feature selection, it discerns the optimal subset
of features and amalgamates it with an SVM classifier for
detection.

Sakarkar et al. [14] propose a method grounded in natural
language processing. They utilize wireshark to capture mali-
cious network packets, extract features such as timestamps and
message information, fit them through word embeddings, and
employ LSTM and GRU algorithms for detection.

Lal et al. [15] propose a hybrid deep learning architecture
named DNS-Tunnet. This approach transforms DNS queries
into raw text, utilizing a CNN for automatic feature extraction.
The extracted features are subsequently input into an SVM
classifier for binary classification.

D’Angelo et al. [16] extract features from the DNS query
payload, organize them into a 6 × 4 matrix to form a two-
dimensional representation, and subsequently employ the CNN
algorithm for binary classification.

Bai et al. [17] propose a method for identifying application
behavior in DNS tunnels based on spatiotemporal information.
They simulate different user application behaviors to capture
DNS traffic, divide each DNS traffic into equal-length seg-
ments, and extract packet length and timing characteristics
from them. Features are selected through the information
gain rate index and then applied to three machine learning
algorithms: bayes net, decision tree and random forest for
classification.

Altuncu et al. [18] harness the Alexa top million websites
and tools like Iodine for data collection. They developed a
deep feed-forward neural network model for classification
and conducted real-time testing in a network environment,
achieving better real-time detection performance compared to
the study by [24].

Shafieian and Zulkernine [19] launch various attacks on
enterprise networks within the AWS cloud to capture traffic,
and then utilize feature engineering and integrated learning
methods to detect low-feature network intrusions.

Liang et al. [20] apply the “leave-one-out” method to
generate multiple datasets. They design a FECC model that
integrates CNN and k-means clustering, employing sliding
windows to distill implicit features from the original DNS
payload. Furthermore, they utilize k-means clustering to assess
the homogeneity and exclusivity of the features, which are then
applied in classification tasks and the detection of samples
from unknown classes.

Wang et al. [21] propose KRTunnel, a pioneering method
for capturing DNS tunnel traffic from the Android side for
detection. This method employs a User-Agent check within
traffic packets to filter out Android traffic. Subsequently,
it extracts features such as subdomain average entropy and
TTL from DNS requests and responses, using the isolation
forest algorithm for binary classification.

In summary, model-based methods train on extracted fea-
tures from datasets, showing great potential in DNS tunnel
detection. They can effectively resist attackers’ attempts to
evade detection by modifying signatures and maintain scal-
ability in complex network topologies. However, current
model-based research primarily focuses on surface-level fea-
tures of domain names or packet payloads, lacking attention
to the behavioral structure characteristics of DNS tunnel
establishment and attack processes. This often results in
high false positive rates when dealing with unknown DNS
tunnels and wildcard DNS resolution scenarios. Additionally,
there is notable overlap in certain features such as domain
length, information entropy, and packet size, making it chal-
lenging to identify the specific DNS tunneling tools being
used.

Therefore, we propose GraphTunnel, a model-based
approach that constructs DNS recursive resolution graphs.
This method accurately simulates the DNS resolution pro-
cess and captures the differing behavioral patterns between
normal DNS resolution and DNS tunnel resolution. This
enhances the differentiation in feature space, ensuring our
method remains robust even when faced with unknown
DNS tunnels and wildcard DNS resolution scenarios. More-
over, GraphTunnel effectively utilizes statistical information
and the capabilities of CNNs, gradually highlighting the
differences in node features within the graph, achiev-
ing high accuracy in distinguishing between various DNS
tunneling tools.

III. METHODOLOGY

To address the issues mentioned in Section I, we pro-
pose GraphTunnel. This framework is engineered for the
real-time detection of DNS tunnels and the identification
of tunneling tools. As illustrated in Figure 1, it encom-
passes modules for traffic input, traffic parsing, DNS tunnel
detection, and tunneling tool Identification. In the sub-
sequent sections, we provide a detailed description of
each module.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7709

Fig. 1. The framework of GraphTunnel.

A. Traffic Input Module

In the traffic input module, GraphTunnel can accept two
modes of input. The first mode, real-time monitoring, employs
scapy [25] to oversee the specified network card interface
and utilizes multi-threading for traffic processing. One thread
is dedicated to traffic capture and storage in the message
queue, while another retrieves packets from it for parsing.
This multi-threaded design circumvents the issue of traffic
capture speed being constrained by parsing and detection,
thereby enhancing overall monitoring and detection effi-
ciency. The second mode inputs traffic packets through pcap
files. To expedite data analysis, GraphTunnel partitions pcap
packets into smaller segments. Subsequently, multi-threading
is employed to concurrently process these smaller pcap
packets.

B. Traffic Parsing Module

In the traffic parsing module, GraphTunnel receive the pack-
ets transmitted from the traffic input module and filter out DNS
traffic based on protocols and port numbers. Subsequently,
we uniformly parse DNS traffic from different platforms
to obtain data at the DNS layer or RAW layer. We then
analyze DNS recursive resolution on this data, generating
corresponding recursive resolution paths.

1) DNS Traffic Filtering: We classify network packets as
DNS traffic based on an analysis of the UDP protocol and
port numbers. Initially, we ascertain the presence of a UDP
layer within the packet. Subsequently, header information is
extracted from this layer, and an examination is conducted on
both the source and destination ports. If either port is identified
as 53, the packet is categorized as DNS traffic. Otherwise, it is
classified as non-DNS traffic.

2) DNS Layer Resolving: Upon obtaining DNS traffic,
further packet analysis is necessary to extract the DNS layer

information. However, these DNS flows originate from differ-
ent platforms, and due to variances in the kernel and protocol
stack implementations, certain encapsulation formats such as
the cooked format may vary across platforms. For instance,
traffic from Android devices may exhibit the Linux cooked
capture v2 identifier, while Linux traffic utilizes Linux cooked
capture v1, and Windows traffic is presented as Ethernet.
This discrepancy may arise from specifying different values
with the -i parameter during tcpdump traffic capture, directly
impacting the format of captured data and the included infor-
mation. Therefore, We utilize scapy version 2.5.0 [25] to
address cross-platform compatibility issues, ensuring unifor-
mity in parsing results for traffic captured across different
platforms, such as Windows, Linux, and Android. Concur-
rently, when dealing with DNS layer data, it is necessary
to consider the varying impacts of different resource records
on the parsing process, which may otherwise lead to parsing
errors and the inability to retrieve information corresponding to
the intended layer. Moreover, due to disparate implementation
approaches among various tunneling tools, certain response
traffic may lack DNS layer headers. In such instances, Graph-
Tunnel directly extracts and analyzes the raw data from the
final layer of the packet.

3) DNS Recursive Parsing: After extracting information
from the DNS layer, we conduct a recursive parsing analysis
of this data to generate corresponding recursive parsing paths.
To preserve the integrity of the DNS resolution process,
we consider both DNS request and response traffic, doing a
one-to-one mapping based on the request domain. However,
mismatches may occur during DNS domain resolution, where
it is not always possible to establish a one-to-one correspon-
dence between requests and responses. Specifically, if only
request data is presented, and subsequent response traffic
is absent, GraphTunnel parses the request traffic, treating it
as an isolated node. Conversely, if only response traffic is

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7710 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE II
USER COVERAGE SCORES FOR DIFFERENT QUERY TYPES

presented, and preceding request traffic is missing, we observe
that the response traffic data will contain the content of the
corresponding request. GraphTunnel prioritizes extracting and
parsing the request part before parsing the response part.
In some instances of real-world traffic, we have encountered
peculiar cases where the status code is marked as a response
packet, yet the data only encompasses the request portion
without any response data. GraphTunnel can still handle this
normally according to the aforementioned rules.

4) Feature Extraction: We extract eight features from the
traffic data packets, which effectively capture the distinctions
between benign DNS traffic and DNS tunnel traffic.

a) Record type corresponding scores: Herrmann et al.
[26] conducted a classification and statistical analysis of
massive DNS logs, generating datasets of different query
types, including the query volume, domain number, and other
indicators for each type. The findings reveal that the user
coverage rates of A and AAAA type queries are the highest,
reaching 99.948% and 82.082%. This indicates that the major-
ity of users employ these two query types, while other types
commonly seen in DNS tunnels, such as TXT and NULL,
are used by very few users. Consequently, we incorporate
this information as a feature by assigning a score to the
user coverage for each record type. Record types that are not
encompassed in the paper’s results suggest an absence of user
queries, thus we assign their corresponding scores as zero.
Detailed data is presented in Table II.

b) Length of subdomain: The stipulated maximum length
for a fully qualified domain name (FQDN) is confined to
255 bytes, as delineated in the DNS protocol RFC 1035 [27].
The second-level domain name, a relatively immutable com-
ponent of the domain name structure, serves as the principal
identifier and brand of the domain name. Conventional DNS
queries are primarily utilized for website access or server
resolution, hence the subdomain name length is generally not
extensive. However, to obscure transmission, DNS tunnels
frequently construct elongated subdomain names subsequent
to the second-level domain name to accommodate an increased
data volume.

F2 = |Dsub| = |DFQDN − Dsecond|, 0 < |DFQDN| ≤ 255

where DFQDN represents the fully qualified domain name,
Dsecond represents the second-level domain, and Dsub repre-
sents the subdomain, which is the part before the second-level
domain.

c) Maximum length of subdomain: The DNS protocol
stipulates that the length of each subdomain should not exceed

63 bytes. DNS tunnels, aiming to transmit concealed data,
often employ a multi-level subdomain structure, with each
level having a considerable length, yet still confined within the
63-byte limit. In contrast, conventional DNS queries, devoid
of the need for data concealment, exhibit a relatively straight-
forward and shallow hierarchy in their subdomain structure,
with shorter lengths at each level. Consequently, for a given
DNS traffic, we can statistically analyze the depth of the
domain name layers, extract the length of each subdomain,
and determine the maximum length among them, thereby
effectively distinguishing between DNS tunnel and benign
traffic.

F3 = |Dmax| =
n

max
i=1
|Dsubi |, 0 < |Dsubi | ≤ 63

where Dmax represents the maximum length domain name
in subdomains, and Dsubi represents the i-th layer of the
subdomain.

d) Count of prolonged consecutive consonant strings:
Subdomains within DNS tunnels often comprise a plethora of
random letter combinations to maximize the transmission of
information, resulting in an abundance of elongated consonant
strings. In contrast, conventional DNS subdomains typically
employ meaningful word groups, making the generation of
excessive elongated consonant strings unlikely. Experimental
results indicate that in the longest subdomain, noticeable
differences in features emerge when the count of consecutive
consonant characters exceeds 4. For benign subdomain, the
count of continuous consonant strings with lengths greater
than 4 is typically limited to the range of 0-1, whereas DNS
tunnel subdomain exhibits multiple instances of such strings.
Hence, the tally of continuous consonant strings in the longest
subdomain can be an effective feature for distinguishing DNS
tunnels from benign traffic. It is important to note that the
hyphen “-” is a frequently occurring character in domain
names and should be considered a delimiter during enumera-
tion rather than being completely disregarded.

F4 =

m∑
i=1

I (|Ci | > 4), Ci ∈ {Dmax}

where Ci represents the i-th consecutive consonant string
in the subdomain, m denotes the number of consecutive
consonant strings, and I stands for the indicator function,
determining whether the condition within the brackets is true.

e) Entropy of the longest subdomain: Information
entropy can quantify the randomness and uncertainty of a
string. A higher entropy indicates stronger randomness and
greater uncertainty, while a lower entropy suggests weaker
randomness and more regularity. In DNS tunnels, encoding
techniques are often employed to conceal transmitted data,
resulting in more random letter combinations and, conse-
quently, higher entropy values for subdomains. Conversely,
conventional DNS subdomains employ semantically coher-
ent word groups, culminating in a comparatively diminished
information entropy. Therefore, the information entropy of the
longest subdomain can be harnessed as a distinguishing feature

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7711

between DNS tunnel and benign traffic.

F5 = −

n∑
i=1

(p(xi )logp(xi )).

Here, p(xi ) represents the frequency of xi appearing in the
entire string.

f) Time-to-live (TTL) value: The TTL value in DNS
query results indicates the lifespan of the corresponding res-
olution record, representing the maximum time the resolution
result can be cached by DNS servers. Under regular circum-
stances, TTL values are typically set to longer durations to
minimize the necessity for repeated queries to nameservers.
However, in DNS tunnels, TTL values are deliberately set to
be short to ensure the rapid expiration of cached resolution
records, facilitating the timely acquisition of the latest results
for real-time data transmission. In essence, the TTL value
distribution in tunnel traffic tends to be concentrated within
a shorter time frame, whereas the TTL values in benign
traffic are relatively longer and exhibit a broader distribution.
Consequently, by statistically analyzing and comparing the
TTL values in the returned packets of DNS traffic, we can
identify an effective characteristic for detecting DNS tunnels.

g) Packet size in bytes: DNS tunnels necessitate the
concealment of supplementary data within DNS packets,
resulting in considerably larger sizes for both corresponding
request and response messages compared to benign DNS
traffic. In contrast, conventional DNS queries merely require
the inclusion of fundamental query information, resulting in
a byte size distribution that falls within a relatively confined
range. Therefore, the byte size of resolved DNS data packets
can be statistically analyzed and utilized as a distinguishing
feature between tunneling traffic and benign traffic.

h) Average response time: For each DNS request, we can
document the timestamp at which the request message is
dispatched, as well as the reception time of the corresponding
response message. The difference between these two values
represents the total response time for the query. Conven-
tional recursive DNS resolution necessitates interaction with
multiple authoritative domain name servers, with each query
requiring a certain amount of time, thereby influencing the
overall response time. In contrast, DNS tunneling, designed
for real-time data transmission, necessitates prompt responses.
Typically, attackers employ DNS tunneling tools on the server
side to facilitate DNS responses, resulting in shorter total
query response times. By dividing the total response time
by the number of recursive layers traversed by the query,
we can obtain the average response time per layer. The average
response time for tunneling traffic is noticeably shorter than
that for regular recursive queries. Therefore, this can serve as
a characteristic feature of the edges in the query path.

F8 =
Tresponse − Trequest

Ln

Here, Tresponse represents the response time, Trequest rep-
resents the request time, and Ln represents the number of
recursive layers traversed during the query.

C. DNS Tunnel Detection Module

In this module, we map the parsing path through the central
node into a graph form, and apply GraphSage to aggregate
neighbor node features to detect DNS tunnels.

1) Graph Generation: To promptly detect DNS tunnel traf-
fic, it is imperative to minimize the volume of traffic processed
during each detection cycle, while maintaining a high degree
of detection accuracy. Consequently, we have empirically set
the graph size (K) to a small value of 20, determining the
number of recursive query paths to be mapped and constructed.
We establish a graph structure by connecting individual query
paths through a central node, with each path representing a
complete DNS recursive resolution, and each node denoting
a unique domain. Commencing from the initially queried
domain, whenever a recursive query is forwarded to a new
authoritative domain server, we ascertain whether this server
node preexists in the graph. If it does, we establish a direct
connection. Otherwise, we instantiate a new node to symbolize
the server and subsequently connect. Each node encapsulates
seven attributes, including information entropy and TTL val-
ues, which are detailed in the section III-B. The edges within
the path delineate the recursive relationship among domain
name resolutions, with the edge attribute corresponding to the
average response time of the domain name resolution process.
Ultimately, we obtain a comprehensive recursive query path
extending from the root node to the leaf node. We replicate
the aforementioned procedure, mapping and constructing K
independent recursive query paths into a relational graph
enriched with features associated with nodes and edges.

2) DNS Tunnel Prediction: GraphSAGE [22], as an
effective algorithm for aggregating neighbor features and
compatible with various types of graphs, is particularly suit-
able for DNS traffic analysis applied to the construction of
recursive query relationship graphs. Specifically, we first set
the recursive depth n for the central node to aggregate neighbor
features. Then, we aggregate the features of neighbor nodes
from the 1st to the nth order for the central node in stages.
After mapping through multiple graph convolution layers and
activation functions, we obtain the fused expression of node
features at different orders. Consequently, the central node
aggregates and encodes the topological structure information
of the entire DNS query relationship graph and the feature
information of each node. Finally, we use the comprehensive
feature vector of the central node as the embedded expression
of the entire graph, and input it into the linear layer for
computation, thereby achieving binary classification of traffic.

D. Tunneling Tool Identification Module

In the tunneling tool identification module, we propose a
G2M algorithm as depicted in Algorithm 1.

Upon detecting DNS tunnels, we apply statistical methods
to analyze each category of features in the incoming graph
embedding vector, extracting seven statistical attributes: vari-
ance, mean, standard deviation, range, median, skewness, and
kurtosis. These features belong to the categories of central
tendency, dispersion, and distribution shape, and are com-
monly used in statistical analysis across various fields [28],

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7712 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 1 G2M Algorithm
Input: Graph G
Output: Matrix M

1: V ← GraphEmbedding(G)

2: M ← InitializeEmptyMatrix(7× 7)

3: for each feature F in V do
4: M[i] ← [var(F), mean(F), std(F), range(F),

5: median(F), skewness(F), kurtosis(F)]

6: end for
7: return M

[29], [30]. They are relatively simple and efficient to compute,
sufficiently describing the statistical characteristics of the
data while avoiding computational complexity. This process
results in a 7 × 7 two-dimensional matrix. Then we arrange
this matrix to form a grayscale image and input it into a
convolutional neural network. The convolutional layers in the
network capture correlations between statistical features, while
the pooling layers aggregate feature information, progressively
abstracting and compressing statistical features. Through this
methodology, the differences in node features within the graph
are amplified, enabling accurate identification of various DNS
tunneling tools.

IV. EVALUATION

We have conducted an evaluation of GraphTunnel’s detec-
tion performance and generalization capabilities. This section
presents the results of these experiments.

A. Experiment Settings

Environmental Setup: The traffic data is collected on four
distinct platforms: Windows 11 AMD64, Kali Linux x86_64,
Centos7 × 86_64, and Thunder Simulator 9. The evaluation
of GraphTunnel is conducted on a 16-node GPU cluster. Each
node in this cluster is equipped with an Intel (R) Core (TM)
i9-10920X CPU operating at 3.50 GHz, 256GB of RAM, and
two NVIDIA RTX 3080 GPUs. The system runs on Ubuntu
20.04 LTS with Linux kernel v.5.4.0. We deploy GraphTunnel
in Python 3.10.

B. Datasets Description

Existing model-based detection methodologies predomi-
nantly derive their datasets from two categories: public
accessible datasets and self-collected datasets. These datasets,
however, have limits on the diversity, magnitude, and accessi-
bility of DNS tunnel traffic.

Studies such as [8], [13], and [16] use public available
datasets, encompassing both benign DNS traffic and DNS
tunnel traffic. Despite this, these datasets incorporate a limited
variety of DNS tunneling tools, typically including just three to
five. Furthermore, Ozery et al. [8] used the publicly available
ZIZA dataset [35], which only provides csv files containing
information such as user_ip, domain, timestamp, and entropy,
without including the original pcap files. This limitation pre-
vents the application of other methods that require extracting
more contextual information from raw traffic.

Fig. 2. Traffic data collected by various tunneling tools.

Research such as [14], [17], [19], and [20] independently
gather benign DNS traffic and DNS tunnel traffic by emulat-
ing real-world attack-defense environments. Nevertheless, the
spectrum of DNS tunneling tools incorporated in these studies
is restricted to merely three to five types, and a substantial
fraction of the datasets remains publicly inaccessible.

To assess the overall performance of GraphTunnel, we con-
duct experiments using four distinct datasets. The first, denoted
as Datasetour , comprises a substantial amount of benign traf-
fic alongside DNS tunneling traffic generated by ten different
DNS tunneling tools. The second, labeled as Datasetwildcard ,
encompasses traffic data associated with wildcard domains.
The third dataset, referred to as DatasetC I C , is sourced from
publicly available data [36]. The final dataset, denoted as
Datasetkorving , is created by [37].

1) Datasetour : We obtained the top 1,000,000 domain
names from the Cloudfare [38] website. Utilizing a distributed
approach, we invoked browser instances to simulate genuine
user interactions with the assigned sublists of domain names.
Concurrently, wireshark is employed to monitor and collect the
generated standard DNS traffic data. In addition, we replicated
a real intranet environment and utilized ten DNS tunneling
tools, including iodine [39], dnscat2 [23] and dns2tcp [40],
to establish DNS tunnels between the local intranet and
public servers. Subsequently, we masqueraded as attackers and
operated various intranet information collection tools, such
as Ladon [41], linEnum [42], and gather [43], on different
operating systems to acquire a variety of sensitive information
from the target system. This process allowed us to capture the
DNS tunnel traffic during the interaction. Detailed tunneling
traffic data is illustrated in Figure 2. It’s worth noting that due
to the varying data lengths transmitted by different tunneling
tools, the volume of traffic collected also varied.

To evaluate the generalization ability of GraphTunnel in
detecting unknown DNS tunnel traffic, we partition the col-
lected data. Table III comprises 2,012,494 instances of benign
DNS traffic and 375,810 instances of DNS tunneling traffic
generated by five DNS tunneling tools such as Iodine [39] and
dnscat2 [23]. This dataset is utilized for training the detection

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7713

TABLE III
TRAFFIC DATA FOR DIFFERENT DNS RECORD TYPES BY

VARIOUS TUNNELING TOOLS

TABLE IV
TRAFFIC DATA FOR DIFFERENT DNS RECORD TYPES BY

UNKNOWN TUNNELING TOOLS

model. Table IV contains an additional 587,049 instances of
traffic generated by five other DNS tunneling tools, employed
to evaluate the model’s performance on unknown samples.
It is important to note that in the real world, the balance
between regular DNS resolution traffic and DNS tunnel traffic
is skewed, with DNS tunnel traffic constituting only a small
portion. Consequently, our dataset does not adhere to a one-
to-one balanced ratio. In an effort to facilitate further research
in this domain, we are making our dataset publicly available
on https://github.com/ggyggy666/DNS-Tunnel-Datasets.

2) Datasetwildcard : We collected the Top 1000 domains
from Cloudflare [38] and adjusted the relevant scripts of
the subdomain enumeration tool OneForAll [44] to verify
whether these domains have adopted wildcard resolution.
Figure 3a depicts the distribution of domains that enable
wildcard resolution among the top 1,000 domains. Specifi-
cally, we successfully detected 913 accessible live domains
within the Top 1000 domains. Subsequently, utilizing One-
ForAll, we obtained subdomains for each live domain and
conducted a check for enabled wildcard resolution on these
subdomains, revealing 31,305 subdomains supporting wildcard
resolution. Figure 3b presents a word cloud generated from a
subset of domains with enabled wildcard resolution, includ-
ing well-known international corporations like google.com,

Fig. 3. The proportion of Accessible, Inaccessible, Wildcard and
Non-Wildcard Domains on Cloudfare TOP 1000.

amazon.com, and facebook.com, highlighting the widespread
application of wildcard domains in the network ecosystem.

Finally, to simulate the pattern of wildcard resolution,
we employed a character variable comprising numerals, letters,
and permissible domain characters such as “−”. We iterated
through the input domain name list, randomly selecting strings
of lengths ranging from 1 to 64 for each domain, and appended
these to the original domain name to generate subdomains.
Subsequently, we simulate browser access to capture the DNS
resolution and response traffic generated during the access
process, totaling 639,208 instances.

3) DatasetC I C : DatasetC I C is a publicly available secu-
rity dataset known as CIC-Bell-DNS-EXF-2021 [36]. This
dataset encompasses 270.8 MB of DNS traffic, comprising
various file types such as audio, compressed files, exe, images,
text, and video. To simulate real attack scenarios, researchers
conduct a five-day experiment involving both mild and severe
attacks. Each day comprises a mixture of benign traffic and
attack traffic generated by various types of file transfer attacks.
In the case of severe attacks, the benign traffic to attack
traffic ratio is 6:4, while in mild attacks, this ratio reaches
9:1. The final dataset encompasses 323,698 samples from
severe attacks, 53,978 samples from mild attacks, and 641,642
distinct benign samples.

4) Datasetkorving: The dataset is created by Korving and
Vaarandi [37]. They develop a configuration tool named
DACA that executes end-to-end automated attack scenarios
and extracts security datasets from the analyzed systems.
Specifically, they deploy DNS servers implemented by dif-
ferent tools to respond to DNS requests, including BIND9,
CoreDNS, Dnsmasq, and PowerDNS. They also simulate real
scenarios and execute three DNS tunneling tools for command
and control (C2) and file transfer, which include iodine,
dns2tcp, and dnscat. Finally, they generate a total of 12,789
C2 traffic and 3,034,833 file transfer traffic.

C. Evaluation Metrics

In this study, we employ a variety of binary classification
evaluation metrics to assess the performance of our DNS
tunnel detection model.

Acc =
T P + T N

T P + T N + F P + F N

Recall =
T P

T P + F N

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7714 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Precision =
T P

T P + F P

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
where TP (True Positives) represents the count of correctly
labeled DNS tunnel traffic, TN (True Negatives) denotes
the correct identification of benign DNS traffic. FN (False
Negatives) signifies the misclassification of DNS tunnel traffic
as benign, while FP (False Positives) indicates benign traffic
incorrectly identified as DNS tunnel traffic.

D. Comparison Methods

To evaluate our approach, we select three categories
of methods for comparison, including a set of baseline
methods, multiple GNNs, and ensemble learning methods.
These selected methods are either well-recognized benchmarks
within the industry for multi-method comparisons or have
demonstrated superior detection performance in recent years.
Specifically, the methods considered are as follows:

1) Baseline Methods: D’Angelo et al. [16]: This method
extracts 22 features from DNS query payloads, arranges them
into 6× 4 two-dimensional images through padding with two
arbitrary constants, and utilizes the CNN algorithm for DNS
traffic classification.

Mahdavifar et al. [45]: This method extracts a total of
30 stateful and stateless features, employing five machine
learning algorithms such as GNB and RF for DNS tunnel
detection.

Suman et al. [46]: This method categorizes DNS traffic
features into lexicon-based features, DNS statistics-based fea-
tures, and third-party-based features. It applies five machine
learning algorithms such as SVM and KNN to train the DNS
tunnel detection model.

Filippo et al. [47]: This method proposes a prototype of a
protocol tunnel detector that combines machine learning and
deep learning. It identifies anomalous connections deviating
from the typically established network connections to detect
DNS tunnels.

2) Multiple GNNs: We integrate our approach with multiple
Graph Neural Networks (GNNs) for detection and classifi-
cation, including GraphSAGE [22], GCN [48], GAT [49],
and GIN [50]. These GNNs are implemented using PyTorch
Geometric (PyG).

3) Ensemble Learning Methods: Chowdhary et al. [51]:
This method employs query length and entropy as two primary
features and integrates Gaussian Naive Bayes, Random Forest,
Decision Tree, and K Nearest Neighbours algorithms to detect
DNS tunnels.

E. Evaluation Results

To evaluate the effectiveness of GraphTunnel, we systemati-
cally address the following questions and design corresponding
experiments for validation.

RQ1: How well does GraphTunnel perform in detecting
DNS tunnels?

To ascertain the detection capabilities of GraphTunnel,
we conduct relevant experiments using the dataset presented

TABLE V
COMPARATIVE RESULTS OF GNNS ON THE DATASET

in Table III. We partition the dataset in a 6:4 ratio, allocating
60% for training and the remaining 40% for testing. Through
cross-validation experiments, we determine that a batch_size
of 64 and a learning rate of 0.005 yielded optimal parameters.
We select four comprehensive graph neural network algorithms
for comparison, including GraphSage, GCN, GAT, and GIN.
Ensuring equivalent computational resources, we apply each
algorithm for training on the same dataset and performed
predictions on the test set. The specific outcomes are illustrated
in Table V.

The experimental results table reveals that all four
GNNs exhibit robust performance on the given binary
classification task. This exemplary performance underscores
the effectiveness of our proposed detection method based
on GNN.

GraphSage employs a random neighbor sampling technique,
aggregating information from neighboring nodes to infer the
label of each node. In the presence of imbalances within
the dataset, GraphSage adeptly captures the characteristics
of tunneling traffic samples, demonstrating superior feature
extraction capabilities. GCN employs analogous neighborhood
aggregation strategies, effectively utilizing information from
adjacent nodes for node classification.

GAT introduces an attention mechanism, enabling the model
to focus on nodes crucial for the classification task. This
mechanism enhances the discriminative power of the model
by directing attention to key nodes in the graph. GIN, rec-
ognized for its high flexibility as a graph neural network
algorithm, exhibits stable performance robust to imbalanced
data interference. It accurately discerns disparities between
benign and tunneling traffic, thereby achieving outstanding
overall performance.

RQ2: How does the generalization capability of Graph-
Tunnel perform against traffic from unknown DNS
tunneling tools?

In the real world, unknown DNS tunneling tools may oper-
ate on various operating systems, including Windows, Linux,
and Android. Owing to the disparities in traffic collection
methods across different operating systems, the traffic input
into the DNS tunnel detection model may encounter parsing
issues stemming from format variations, thereby impeding the
model’s detection efficacy.

GraphTunnel considers this and adapts to DNS tunnel traffic
collected from different operating systems. Specifically, the
DNS tunnel tool traffic used in Table IV comes from different
operating system terminals. The Windows terminal collects
traffic from the cobaltstrike [52] and tcp-over-dns [34], the
Linux terminal collects traffic from the ozymandns [53] and
dns2tcp [40], and the Android terminal collects traffic from the

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7715

TABLE VI
DETECTION OUTCOMES FOR UNKNOWN TUNNELING TOOLS

Fig. 4. The proportion of tool traffic on different operating systems.

AndIodine [54]. The distribution of these tools is presented in
Figure 4.

To evaluate the detection performance of GraphTunnel
against unknown DNS tunneling tools across platforms,
we conduct the second experiment using the data from
Table IV. Under the same experimental conditions as Q1,
we employ the pre-trained model to predict the traffic from
these tunneling tools, and the results are presented in Table VI.

The results demonstrate that GraphTunnel maintains a 100%
detection accuracy even when facing with unknown tunneling
tools. This is attributed to GraphTunnel’s consideration of
both request and response traffic, matching them one by one
and incorporating authoritative domain name servers into the
DNS resolution process, effectively constructing the spatial
structure of the domain resolution process. Simultaneously,
it captures the temporal cost of the DNS resolution process,
ingeniously transforming DNS resolution into embeddings of
spatiotemporal features.

By intelligently aggregating the features of neighboring
nodes through graph neural network algorithms, GraphTunnel
efficiently detects and dissects the complex graph structures
and patterns within traffic data. This leads to an increasing
disparity in the characteristics between benign DNS traffic
and DNS tunneling traffic. Therefore, even for unknown DNS
tunneling tools, GraphTunnel consistently achieves robust
detection performance.

RQ3: Is GraphTunnel superior to baseline methods?
To evaluate the overall performance of GraphTunnel,

we conduct experiments using DatasetC I C under the men-
tioned experimental setup and compare the results with
baseline methods. Additionally, we employ GraphTunnel
and the CNN model trained on DatasetC I C to predict
the C2 and FileTransfer categories of the unknown dataset

Datasetkorving . The detailed comparative outcomes are pre-
sented in Table VII.

The tabulated results demonstrate that in the DNS tun-
nel detection task, all baseline methods achieve F1 Scores
exceeding 90%, with Mahdavifar et al. [45] notably reaching
an exceptional 99.97%. This outstanding performance can be
attributed to the adoption of the random forest algorithm,
coupled with bootstrapping and feature random selection,
effectively mitigating the risk of overfitting and yielding
favorable outcomes on imbalanced datasets. Suman [46] apply
various machine learning techniques such as SVM and KNN,
achieving an F1 score of 98.9% through meticulous adjust-
ment of hyperparameters and integration of advanced feature
selection techniques. However, its robustness is comparatively
lower, achieving an F1 score of only 57.82% when confronted
with other machine learning algorithms like MLP.

Filippo et al. [47] combine unsupervised and supervised
methods like SVM for binary classification, achieving a
commendable F1 Score of 95.6%. However, this approach
slightly lags compared to other methods, possibly due to data
truncation during processing, leading to information loss and
impacting overall performance. D’Angelo et al. [16] arrange
features into two-dimensional images and apply CNN for
training, achieving an F1 Score of 99.71% for known DNS
tunnels. By automatically learning and extracting relevant
features at different abstraction levels, CNN identifies complex
patterns in DNS query payloads. However, as indicated by
the results in Table VII, CNN struggles to accurately capture
the behavioral patterns of entirely unfamiliar DNS tunneling
traffic. This limitation leads to a higher rate of false negatives,
resulting in a relatively low F1 Score of 57.14% and indicating
poor robustness.

In contrast, GraphTunnel captures unique spatiotemporal
features by retracing the DNS recursive resolution process.
The aggregation of neighbor nodes enhances the spatial
structural characteristics of DNS resolution obviously. Regard-
less of the intensity of the attack, GraphTunnel effectively
distinguishes benign traffic from tunnel traffic, resulting in
100% detection accuracy. Even when faced with a completely
unknown dataset, GraphTunnel maintains high robustness,
achieving at least a 99.37% F1 Score.

RQ4: How effectively does GraphTunnel perform in
detecting wildcard DNS resolution scenarios?

To evaluate the robustness of GraphTunnel in the con-
text of wildcard DNS resolution scenarios, we incorporate
Datasetwildcard as benign DNS traffic into the original model
and conduct a retraining process while keeping other condi-
tions unchanged. In addition, we apply Chowdhary et al. [51]
to our dataset and perform the same operations for a more
comprehensive comparative analysis with GraphTunnel.

Figure 5 illustrates the detection performance of three
ensemble models in Chowdhary et al. [51] and GraphTunnel
before incorporating wildcard domain traffic. The first two
models display metrics exceeding 90%, whereas the third
model exhibits a lower recall of merely 0.8951, albeit its
accuracy and precision are the highest. This could be ascribed
to the fewer integrated models, accentuating the detection

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7716 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE VII
PERFORMANCE OF COMPARISON EXPERIMENTS WITH BASELINE METHODS

TABLE VIII
PERFORMANCE COMPARISON OF THE MODEL AFTER WILDCARD DNS RESOLUTION

Fig. 5. Performance of comparison experiments with Chowdhary et al. [51].

characteristics of the two algorithms and predisposing them to
yield high precision. Conversely, all metrics for GraphTunnel
stand at 100%.

Table VIII showcases the detection outcomes of the new
model on the validation set subsequent to the integration of
wildcard domain traffic. By observing the results in the table,
we notice an enhancement in precision and accuracy for the
three ensemble models following the integration of additional
regular wildcard domain traffic data. The reason lies in gen-
erating 1-64 character random subdomains according to RFC
specifications. When the subdomain length is brief, features
such as domain length and information entropy are indistin-
guishable from benign DNS domains. Moreover, by emulating
how real users access domains via browsers, the collected
traffic aligns with normal DNS traffic in terms of features like
DNS resolution record types and timestamps. Consequently,
for models that concentrate on extracting superficial domain
or packet features, the majority of positive samples can be
accurately classified as the positive class, thereby enhancing

precision and accuracy. However, when the subdomain length
is excessively elongated, the significance of features such as
domain length and information entropy becomes pronounced,
predisposing the model to misclassify them as malicious DNS
tunneling behavior. This results in some positive samples
being erroneously classified as negative, leading to a decline
in recall, particularly in the first two models, with recall
decreasing by 12.61% and 10.61% respectively.

It is noteworthy that subsequent to the integration of
wildcard domain traffic data, the performance metrics of
GraphTunnel exhibit a downward trajectory across various
aspects. This suggests that wildcard domains exert a sub-
stantial impact on the model, which can readily induce bias
in the model’s detection results and give rise to false posi-
tives. However, in contrast to these three integrated models,
GraphTunnel takes into account DNS recursive resolution,
aggregates domain name node features during the resolution
process, and procures unique spatiotemporal structure features.
As a result, the influence of features such as subdomain
length and information entropy on model detection is relatively
minimal, and the recall rate of GraphTunnel has only declined
by 0.41%. Furthermore, its F1 Score can still attain 99.78%,
thereby demonstrating considerable robustness and reliability.

RQ5: How does GraphTunnel perform in recognizing
tunneling tools?

To evaluate the capability of GraphTunnel in identifying
tunneling tools, we conduct a multi-classification recogni-
tion experiment under the same experimental conditions as
previously mentioned, involving ten tunneling tools such as
Iodine [39] and dnscat2 [23]. In this experiment, we employ
the metric of accuracy to assess the identification performance
of GraphTunnel. Figure 6 presents the detailed recognition
results for different types of tunneling tool traffic.

The graphical representation reveals the exemplary perfor-
mance of the model in accurately classifying normal DNS
traffic and various tunneling tools. The model demonstrates
a near-perfect classification with minimal misclassifications.
It exhibits an effective recognition of each category, with

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7717

Fig. 6. Identification results for various tunneling tools.

the accuracy rate for each type exceeding 98%. Notably, the
traffic generated by the tools dnspot [31], Andiodine [54], and
cobaltstrike [52] is identified with an accuracy rate of 100%.

The performance is relatively less impressive for ozy-
mandns [53], where 98.57% of the traffic can be successfully
identified. There exists a 0.48% probability of being iden-
tified as dns2tcp [40], a 0.24% chance of being identified
as dnspot [31], and a 0.71% likelihood of being identified
as Andiodine [54]. This suggests that ozymandns is slightly
similar to these tools in tunneling data through DNS.

In summary, GraphTunnel maintains high accuracy in iden-
tifying traffic generated by various tools. In the face of
potential threats, it proves instrumental for analysts to swiftly
locate malicious activities based on the identified results and
take timely countermeasures.

RQ6: How well does GraphTunnel perform in terms of
time and space efficiency?

To comprehensively evaluate the performance of Graph-
Tunnel in real-time monitoring environments, we conduct
detailed experiments from multiple dimensions, including time
and space consumption. During the model training phase,
we utilize the Datasetour to ensure that the model learns
sufficient features and information. In the model prediction
phase, we employ the Datasetkorving to verify the model’s
generalization ability on unseen data. To better reflect real-
world scenarios, we deploy GraphTunnel in a real network
environment to monitor the traffic on network cards in real-
time. Additionally, we use dnscat2 [23] to construct a real
DNS tunnel and launch attacks through this tunnel to evaluate
the real-time detection capability of GraphTunnel.

During the experiments, we measure several key perfor-
mance indicators. We record the Training Time per Epoch
(TTE) to evaluate the time consumption of each epoch of
the model training process. Memory Usage (TMU) represents
the resource requirements of GraphTunnel during training.
Prediction Time (PT) is measured to assess the speed of the
prediction process, while Prediction Memory Usage (PMU)
provides insights into the memory requirements during infer-
ence. Attack Detection Time (ADT) measures the time taken

TABLE IX
COMPARISON OF TIME AND SPACE CONSUMPTION BETWEEN

CNN AND GRAPHTUNNEL

from the initiation of an attack to its detection. Each evaluation
experiment is repeated 5 times, and the average value is taken.
We employ the CNN model [16] to repeat the aforementioned
process for comparison. The specific experimental results are
presented in the table IX.

The experimental findings reveal that GraphTunnel demon-
strates higher time efficiency during training compared to
the CNN model, with a TTE of 66.69 seconds versus
CNN’s 110.85 seconds. However, GraphTunnel’s TMU of
1638.42 MB compared to CNN’s 1566.94 MB is higher. This
can be attributed to GraphTunnel’s parsing of data into graph
structures, which contain richer contextual information than
CNN’s vector data. This results in higher memory utilization
but allows GraphTunnel to cover more data packets, reducing
the number of iterations over the graph data in each epoch and
thus achieving faster training.

In terms of prediction, GraphTunnel exhibits a longer PT of
48.65 seconds but lower PMU of 126.44 MB, contrasting with
CNN’s 12.39 seconds of prediction time and 1810.9 MB of
memory usage. This aligns with expectations as CNN typically
loads and processes the entire dataset at once during predic-
tion, minimizing overhead from memory read/write operations.
In contrast, GraphTunnel adopts a data segmentation strategy
when handling large-scale datasets, initially dividing data
packets into smaller parts before predicting each segment.
This approach reduces memory usage but leads to increased
processing time.

GraphTunnel requires 4.46 seconds for ADT, exceeding
CNN’s 0.89 seconds. This difference can be attributed to the
CNN model’s simpler process of feature extraction from indi-
vidual data packets, which enables faster real-time detection.
However, the CNN model’s poor robustness in classify-
ing unknown tunneling traffic poses challenges for accurate
traffic classification, potentially increasing the workload for
emergency response personnel. In contrast, GraphTunnel’s
approach of constructing a DNS recursive resolution graph
requires more information from data packets for comprehen-
sive traffic analysis and feature extraction. While this leads
to slower real-time detection, it offers higher robustness,
ensuring accurate detection in complex and dynamic network
environments, providing a more reliable basis for emergency
response. Therefore, we consider the time acceptable for real-
time monitoring.

Indeed, there is potential to optimize our GraphTunnel to
shorten traffic detection time and achieve faster response. For
offline detection using the Datasetwildcard , our GraphTunnel
model requires 48 seconds, consuming only 126MB of mem-
ory. Consequently, we can feasibly introduce a multithreading
mechanism, adopting a “space-for-time” strategy that enables

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



7718 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

parallel traffic analysis and integration of processed results
into the graph for model detection. For real-time detection,
GraphTunnel necessitates gathering sufficient traffic context
information to construct a DNS recursive resolution graph,
ensuring high robustness, which results in longer processing
times. Therefore, reducing the size of the graph is a viable
solution, as it implies analyzing a reduced amount of traffic
each time. As for determining the optimal graph size to
balance robustness and detection efficiency, it needs to be
fine-tuned according to the specific circumstances in actual
enterprise applications. Additionally, GraphTunnel’s perfor-
mance is influenced by the packet sending frequency of the
DNS tunnel tool and the stability of the network environment.
We can mitigate the negative impact of these factors on
ADT performance by optimizing the network rate processing
mechanism, such as adjusting the data flow control strategy or
enhancing the packet reception mechanism.

V. DISCUSION

Although GraphTunnel does not cover all unknown DNS
tunnels, it still achieves 100% detection on the unkown
samples, which consists of five completely unknown DNS
tunneling tools. Moreover, as corroborated by the Q4 experi-
ment, wildcard DNS resolution poses a considerable challenge
to accurate detection, and GraphTunnel does not currently
achieve 100% accuracy in this scenario. Nevertheless, it main-
tains an F1 score of 99.78%, surpassing current methods across
various metrics. In the realm of application identification
research, the challenge of multi-classification looms large.
Despite GraphTunnel not achieving 100% identification for
every DNS tunneling tool, it currently holds the leading posi-
tion among existing studies. Our commitment to continuous
improvement and optimization in future research endeavors
aims to further enhance GraphTunnel’s capabilities across all
dimensions.

VI. CONCLUSION

In this study, we introduce GraphTunnel, a robust DNS tun-
nel detection framework through the DNS recursive resolution
graph. This framework is dedicated to the real-time detection
of DNS tunnels and has the capability to identify specific
tunneling tools from DNS tunnel traffic. Initially, GraphTunnel
filters DNS traffic from network traffic and constructs a graph
structure representing the DNS recursive resolution process.
Subsequently, it utilizes a GNN algorithm to aggregate features
of nodes and edges in the graph for effective traffic classi-
fication. Moreover, GraphTunnel applies the G2M algorithm
for statistical learning of node features in the graph and
employs a CNN algorithm to generate intelligent identifiers for
DNS tunneling tools. Experimental results demonstrate that
GraphTunnel performs admirably in detecting DNS tunnels,
with metrics surpassing those of existing baseline methods.
GraphTunnel maintains high robustness when facing unknown
DNS tunneling tools and generic domain name resolution
scenarios. Additionally, it exhibits excellent performance in
identifying DNS tunneling tools. In the future, we plan to pro-
pose techniques against GraphTunnel to generate adversarial

traffic for bypassing, continuously enhancing GraphTunnel’s
ability to flexibly respond to unknown attack methods.

REFERENCES

[1] J. Coker. (2021). 72% of Organizations Experienced a DNS
Attack in the Past Year. [Online]. Available: https://www.infosecurity-
magazine.com/news/72-orgs-dns-attack-last-year/

[2] EfficientIP. (2022). IDC 2022 Global DNS Threat Report. [Online].
Available: https://efficientip.com/resources/idc-dns-threat-report-2022/

[3] Y. Wang, A. Zhou, S. Liao, R. Zheng, R. Hu, and L. Zhang, “A com-
prehensive survey on DNS tunnel detection,” Comput. Netw., vol. 197,
Oct. 2021, Art. no. 108322.

[4] S. Sheridan and A. Keane, “Detection of DNS based covert channels,”
in Proc. Eur. Conf. Cyber Warfare Secur., 2015, p. 267.

[5] S. Adiwal, B. Rajendran, and S. D. Sudarsan, “DNS intrusion detection
(DID)—A SNORT-based solution to detect DNS amplification and DNS
tunneling attacks,” Franklin Open, vol. 2, Mar. 2023, Art. no. 100010.

[6] L. Salat, M. Davis, and N. Khan, “DNS tunnelling, exfiltration and
detection over cloud environments,” Sensors, vol. 23, no. 5, p. 2760,
Mar. 2023.

[7] T. Ghosh, E. El-Sheikh, and W. Jammal, “A multi-stage detection
technique for DNS-tunneled botnets,” in Proc. EPiC Ser. Comput., 2019,
pp. 137–143.

[8] Y. Ozery, A. Nadler, and A. Shabtai, “Information based heavy hitters
for real-time DNS data exfiltration detection,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2024, pp. 1–15.

[9] A. F. Sani and M. A. Setiawan, “DNS tunneling detection using
elasticsearch,” IOP Conf. Ser., Mater. Sci. Eng., vol. 722, no. 1, 2020,
Art. no. 012064.

[10] W. Ellens, P. Żuraniewski, A. Sperotto, H. Schotanus, M. Mandjes, and
E. Meeuwissen, “Flow-based detection of DNS tunnels,” in Proc. 7th
IFIP WG 6.6 Int. Conf. Auto. Infrastructure, Manage., Secur., Barcelona,
Spain. Heidelberg, Germany: Springer, Jun. 2013, pp. 124–135.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-
642-38998-6_16#rightslink

[11] V. Paxson et al., “Practical comprehensive bounds on surreptitious
communication over DNS,” in Proc. 22nd USENIX Secur. Symp., 2013,
pp. 17–32.

[12] N. Ishikura, D. Kondo, V. Vassiliades, I. Iordanov, and H. Tode, “DNS
tunneling detection by cache-property-aware features,” IEEE Trans.
Netw. Service Manage., vol. 18, no. 2, pp. 1203–1217, Jun. 2021.

[13] F. A. Al-Ibraheemi, S. Al-Ibraheemi, and H. Amintoosi, “A hybrid
method of genetic algorithm and support vector machine for DNS
tunneling detection,” Int. J. Electr. Comput. Eng. (IJECE), vol. 11, no. 2,
p. 1666, Apr. 2021.

[14] G. Sakarkar, M. K. H. Kolekar, K. P. G. Patil, P. Dutta, R. Chaturvedi,
and S. Kumar, “Advance approach for detection of DNS tunnel-
ing attack from network packets using deep learning algorithms,”
Adv. Distrib. Comput. Artif. Intell. J., vol. 10, no. 3, pp. 241–266,
2021. [Online]. Available: https://revistas.usal.es/cinco/index.php/2255-
2863/issue/view/1322

[15] A. Lal, A. Prasad, A. Kumar, and S. Kumar, “DNS-tunnet: A
hybrid approach for DNS tunneling detection,” in Proc. 4th Int.
Conf. Adv. Comput. Technol., Inf. Sci. Commun. (CTISC), Apr. 2022,
pp. 1–6.

[16] G. D’Angelo, A. Castiglione, and F. Palmieri, “DNS tunnels detection
via DNS-images,” Inf. Process. Manage., vol. 59, no. 3, May 2022,
Art. no. 102930.

[17] H. Bai, W. Liu, G. Liu, Y. Dai, and S. Huang, “Application behavior
identification in DNS tunnels based on spatial–temporal information,”
IEEE Access, vol. 9, pp. 80639–80653, 2021.

[18] M. A. Altuncu et al., “Deep learning based DNS tunneling detection
and blocking system,” Adv. Electr. Comput. Eng., vol. 21, no. 3,
pp. 39–48, 2021.

[19] S. Shafieian and M. Zulkernine, “Multi-layer stacking ensemble learners
for low footprint network intrusion detection,” Complex Intell. Syst.,
vol. 9, no. 4, pp. 3787–3799, Aug. 2023.

[20] J. Liang, S. Wang, S. Zhao, and S. Chen, “FECC: DNS tunnel detec-
tion model based on CNN and clustering,” Comput. Secur., vol. 128,
May 2023, Art. no. 103132.

[21] S. Wang, L. Sun, S. Qin, W. Li, and W. Liu, “KRTunnel: DNS channel
detector for mobile devices,” Comput. Secur., vol. 120, Sep. 2022,
Art. no. 102818.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: GraphTunnel: ROBUST DNS TUNNEL DETECTION BASED ON DNS RECURSIVE RESOLUTION GRAPH 7719

[22] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–11.

[23] Dnscat2. Accessed: Sep. 23, 2023. [Online]. Available: https://github.
com/iagox86/dnscat2

[24] J. Ahmed, H. H. Gharakheili, Q. Raza, C. Russell, and V. Sivaraman,
“Real-time detection of DNS exfiltration and tunneling from enterprise
networks,” in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage.
(IM), Apr. 2019, pp. 649–653.

[25] Scapy. Accessed: Sep. 27, 2023. [Online]. Available: https://github.
com/secdev/scapy

[26] D. Herrmann, C. Banse, and H. Federrath, “Behavior-based track-
ing: Exploiting characteristic patterns in DNS traffic,” Comput. Secur.,
vol. 39, pp. 17–33, Nov. 2013.

[27] P. Mockapetris, Domain Names—Implementation and
Specification, document RFC 1035, 1987. [Online]. Available:
https://www.zytrax.com/books/dns/apd/rfc1035.txt

[28] S. Uddin and H. Lu, “Dataset meta-level and statistical features affect
machine learning performance,” Sci. Rep., vol. 14, no. 1, p. 1670,
Jan. 2024.

[29] C. Guo, M. Lu, and J. Chen, “An evaluation of time series summary
statistics as features for clinical prediction tasks,” BMC Med. Informat.
Decis. Making, vol. 20, no. 1, pp. 1–20, Dec. 2020.

[30] M. Altaf, T. Akram, M. A. Khan, M. Iqbal, M. M. I. Ch, and C.-H. Hsu,
“A new statistical features based approach for bearing fault diagnosis
using vibration signals,” Sensors, vol. 22, no. 5, p. 2012, Mar. 2022.

[31] Dnspot. Accessed: Sep. 23, 2023. [Online]. Available:
https://github.com/mosajjal/dnspot

[32] DNS-Shell. Accessed: Sep. 23, 2023. [Online]. Available:
https://github.com/sensepost/DNS-Shell

[33] Tuns. Accessed: Sep. 23, 2023. [Online]. Available:
https://members.loria.fr/LNussbaum/tuns.html

[34] TCP-Over-DNS. Accessed: Sep. 23, 2023. [Online]. Available:
https://analogbit.com/software/tcp-over-dns/

[35] K. Žiža, P. Tadić, and P. Vuletić, “DNS exfiltration detection
in the presence of adversarial attacks and modified exfiltrator
behaviour,” Int. J. Inf. Secur., vol. 22, no. 6, pp. 1865–1880,
Dec. 2023.

[36] (2021). CIC-Bell-DNS-EXF-2021 Dataset. Accessed: Oct. 20, 2023.
[Online]. Available: https://www.unb.ca/cic/datasets/dns-exf-2021.html

[37] F. Korving and R. Vaarandi, “Daca: Automated attack scenarios and
dataset generation,” in Proc. Int. Conf. Cyber Warfare Secur., 2023,
vol. 18, no. 1, pp. 550–559.

[38] (2023). Cloudflare. Accessed: October 6, 2023. [Online]. Available:
https://radar.cloudflare.com/domains

[39] Iodine. Accessed: Sep. 23, 2023. [Online]. Available: https://code.
kryo.se/iodine/

[40] DNS2TCP. Accessed: Sep. 23, 2023. [Online]. Available:
https://github.com/alex-sector/dns2tcp

[41] Ladon. Accessed: Oct. 6, 2023. [Online]. Available:
https://github.com/k8gege/Ladon

[42] LinEnum. Accessed: Oct. 6, 2023. [Online]. Available:
https://github.com/rebootuser/LinEnum

[43] (2023). Gather. Accessed: Oct. 6, 2023. [Online]. Available:
https://github.com/wwl012345/gather

[44] OneForAll. Accessed: Oct. 13, 2023. [Online]. Available:
https://github.com/shmilylty/OneForAll

[45] S. Mahdavifar et al., “Lightweight hybrid detection of data exfiltration
using DNS based on machine learning,” in Proc. 11th Int. Conf.
Commun. Netw. Secur., Dec. 2021, pp. 80–86.

[46] O. P. Suman, “A novel approach for malicious domain classification
based on DNS traffic analysis and machine learning,” Oct. 2023.

[47] F. Sobrero, B. Clavarezza, D. Ucci, and F. Bisio, “Towards a near-real-
time protocol tunneling detector based on machine learning techniques,”
J. Cybersecurity Privacy, vol. 3, no. 4, pp. 794–807, Nov. 2023.

[48] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[49] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[50] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[51] A. Chowdhary, M. Bhowmik, and B. Rudra, “DNS tunneling detec-
tion using machine learning and cache miss properties,” in Proc.
5th Int. Conf. Intell. Comput. Control Syst. (ICICCS), May 2021,
pp. 1225–1229.

[52] Cobalt Strike. Accessed: Sep. 23, 2023. [Online]. Available:
https://www.cobaltstrike.com/

[53] OzymanDNS. Accessed: Sep. 23, 2023. [Online]. Available:
https://github.com/splitbrain/dnstunnel

[54] AndIodine. Accessed: Sep. 23, 2023. [Online]. Available:
https://github.com/yvesf/andiodine

Authorized licensed use limited to: Zhejiang University. Downloaded on January 06,2025 at 14:28:59 UTC from IEEE Xplore.  Restrictions apply. 


