
9216 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Sensitive Behavioral Chain-Focused Android
Malware Detection Fused With AST Semantics

Jiacheng Gong , Graduate Student Member, IEEE, Weina Niu , Senior Member, IEEE,
Song Li , Member, IEEE, Mingxue Zhang , and Xiaosong Zhang

Abstract— The proliferation of Android malware poses a
substantial security threat to mobile devices. Thus, achieving
efficient and accurate malware detection and malware family
identification is crucial for safeguarding users’ individual prop-
erty and privacy. Graph-based approaches have demonstrated
remarkable detection performance in the realm of intelligent
Android malware detection methods. This is attributed to the
robust representation capabilities of graphs and the rich semantic
information. The function call graph (FCG) is the most widely
used graph in intelligent Android malware detection. However,
existing FCG-based malware detection methods face challenges,
such as the enormous computational and storage costs of mod-
eling large graphs. Additionally, the ignorance of code semantics
also makes them susceptible to structured attacks. In this paper,
we proposed AndroAnalyzer, which embeds abstract syntax tree
(AST) code semantics while focusing on sensitive behavior chains.
It leverages FCGs to represent the macroscopic behavior of the
application, and employs structured code semantics to represent
the microscopic behavior of functions. Furthermore, we proposed
the sensitive function call graph (SFCG) generation algorithm to
narrow down the analysis scope to sensitive function calls, and
the AST vectorization algorithm (AST2Vec) to capture struc-
tured code semantics. Experimental results demonstrate that the
proposed SFCG generation algorithm noticeably reduces graph
size while ensuring robust detection performance. AndroAnalyzer
outperforms the baseline methods in binary and multiclass
classification tasks, achieving F1-scores of 99.21% and 98.45%
respectively. Moreover, AndroAnalyzer (trained with samples of
2010-2018) exhibits good generalization capabilities in detecting
samples of 2019-2022.

Index Terms— Android malware detection, function call graph,
abstract syntax tree, code semantic embedding, graph neural
networks.

Received 23 October 2023; revised 24 April 2024; accepted 20 September
2024. Date of publication 26 September 2024; date of current version
7 October 2024. This work was supported in part by the National Science
Foundation of China under Grant 62372086, in part by Chongqing Natural
Science Foundation Innovation and Development Joint Foundation under
Grant CSTB2023NSCQ-LZX0003, and in part by Sichuan Natural Science
Foundation under Grant 24ZNSFSC0038. The associate editor coordinating
the review of this article and approving it for publication was Dr. Aaron
Visaggio. (Corresponding author: Weina Niu.)

Jiacheng Gong is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731,
China (e-mail: gongjc.uestc@gmail.com).

Weina Niu and Xiaosong Zhang are with the Institute for Advanced Study,
University of Electronic Science and Technology of China, Shenzhen 518110,
China, and also with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731,
China (e-mail: vinusniu@uestc.edu.cn; johnsonzxs@uestc.edu.cn).

Song Li and Mingxue Zhang are with the State Key Laboratory of
Blockchain and Data Security, Zhejiang University, Hangzhou 310058, China
(e-mail: songl@zju.edu.cn; mxzhang97@zju.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3468891

I. INTRODUCTION

THE development of Internet of Things (IoT) has led to
continuous implementation of the digital living concept,

and widespread adoption of mobile devices. Concurrently,
Android OS, the dominant operating system for mobile
devices, is facing remarkable challenges posed by massive
Android malware. According to reports by Kaspersky [1],
in the first quarter of 2023, 307,529 malicious installation
packages were detected. These malware strains often infiltrate
user devices covertly, aiming to steal sensitive information or
gain control over the device, posing a severe threat to users’
financial assets and privacy.

In response to the security threats posed by Android mal-
ware, and considering the substantial costs associated with
manual software analysis, numerous intelligent malware detec-
tion methods have been proposed [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. These methods are designed to identify a vast number
of malicious software instances efficiently.

In recent years, graph-based Android malware detection
methods have garnered notable attention [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. This is
because the graphs can capture complex relationships between
different components of malware, providing a multi-level
information representation of malware. It enables the analysis
of associations between different malware instances. Among
these methods, function call graphs (FCGs), as a structural
representation of software, can capture the call relationships
between functions, and allows the discovery of potential mali-
cious behavior patterns. Therefore, FCGs are most widely used
in intelligent Android malware detection. Aiming to model
application behavior and optimize modeling costs, we focus
on FCGs over graphs about feature relations or more detailed
graphs, such as control flow graphs. However, in existing FCG-
based methods, the following issues have been identified:

(1) Fine-grained modeling and large-scale analysis. Exist-
ing FCG-based malware detection methods can be broadly
categorized into three types.

• The first category of methods generate feature vectors
based on the usage or frequency of the API calls in the
FCGs. These vectors are subsequently utilized to perform
malware detection [5]. These methods heavily rely on
the expertise of the designer and can be influenced by
subjective factors.

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-7970-9968
https://orcid.org/0000-0002-3235-3463
https://orcid.org/0000-0002-7961-8502
https://orcid.org/0000-0001-8863-8751
https://orcid.org/0000-0001-9886-1412

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9217

• The second category of methods utilize FCGs as input
to the graph neural networks (GNNs) and employ
structural or frequency features of nodes for classifica-
tion [9], [10], [11]. However, the FCGs can be quite
large, leading to considerable computational and stor-
age overhead for subsequent AI model training. For
example, consider a sample with an MD5 hash of
88ddf2594600f4b570478fa92a7050a0; its APK file size
is 30.18MB, and the extracted Dex files have a size of
52.42MB. The FCG generated by Androguard [21] con-
tains 356,687 nodes and 1,700,696 edges. In mainstream
app markets, many popular apps have sizes exceeding
50MB, with game apps often exceeding 1GB. The com-
putational and storage costs of analyzing and learning
from the complete FCG using AI models can be substan-
tial in such cases.

• The third category of methods, such as those proposed
in [4], [22], and [8], utilize features related to sensitive
API calls within the FCGs as application representations.
These methods overlook the contextual information of
function calls, specifically the information within the call
chains of sensitive APIs.

(2) Ignoring structured code semantics. In existing
graph-based detection methods, API semantics extraction can
be broadly categorized into the following types.

• The first category of work [4], [5], and [11] uses only
node-related statistical or structural features, ignoring
code semantics. This makes their classification results
susceptible graph structural attacks [23].

• The second category of work uses One-hot encoding
to represent API usage patterns. However, the encoding
vector is highly sparse and does not contain function code
semantics information.

• The third category of work [9] and [7] employs natural
language processing techniques to learn the code seman-
tics. However, source code and binary files are more
structured and logically organized than natural language.
Abstract syntax trees (ASTs), control flow graphs, and
data flow graphs are more suitable for representing struc-
tured code semantics.

To address the abovementioned issues, we proposed an
Android malware detection method called AndroAnalyzer,
which focuses on sensitive behavior chains to reduce the
computational and storage overhead. It also incorporates struc-
tured code semantics in the chains to be resistent to structural
attacks. Specifically, the sensitive behavior chain is a chain of
function calls that are closely associated with sensitive behav-
iors. All the sensitive behavior chains are merged to construct
the sensitive function call graph (SFCG). AndroAnalyzer
utilizes the SFCG to characterize the macroscopic behavior
of the application, providing a view of the execution flow of
malicious behaviors. Next, AndroAnalyzer extracts structural
code semantics via ASTs to represent the micro-behavior of
each function, delving into the code logic within the functions.
Furthermore, by incorporating AST code semantics features
generated by the proposed AST2Vec algorithm and combining
them with API semantics features and structural information

features obtained from social network analysis, we can obtain a
SFCG with fused node features. Finally, this graph is input into
a GNN with graph self-attention pooling for learning, resulting
in an intelligent classifier for Android malware detection.

In summary, the major contributions of this work include:
• We proposed an effective method for representing the

behavior of Android applications. It uses FCGs to rep-
resent the macroscopic behavior of applications and
structured code semantics to represent the microscopic
behavior of functions. This approach strikes a balance
between modeling granularity and storage cost. Addition-
ally, we designed a SFCG generation algorithm to reduce
the graph size and focus on sensitive behavior chains
that are related to malicious behaviors. This effectively
reduces the computational overhead when analyzing com-
plex APK files.

• We proposed a structured code semantics extrac-
tion algorithm called AST2Vec, based on ASTs. This
algorithm effectively extracts structured code semantics
from smali code, providing comprehensive behavioral
information for Android malware detection. Furthermore,
the classification model exhibits improved generalization
and robustness in binary and multi-class classification by
integrating API semantics features and structural features
obtained from social network analysis.

• We conducted extensive performance evaluation exper-
iments on two datasets constructed from CICMalDroid
[24] and AndroZoo [25]. The experimental results
demonstrate that AndroAnalyzer outperforms the baseline
methods in binary and multi-class classification tasks.
Furthermore, it (trained with samples in 2010-2018)
exhibits good generalization ability in the detection of
samples in 2019-2022.

The remaining sections are organized as follows. Section II
provides an overview of graph-based malicious software
detection works. In Section III, we introduce the design of
AndroAnalyzer, and in Section IV, we present the evaluation
results. Finally, we discuss briefly in Section V and offer con-
cluding remarks and future research directions in Section VI.

II. RELATED WORK

A. Detection Methods Based on Graph Analysis

This category of methods models static or dynamic features
of Android applications using graph. Subsequently, it employs
graph matching or graph feature extraction in conjunction with
machine learning techniques to perform detection.

In 2019, Arora et al. proposed PermPair [2], which models
the usage patterns of permission pairs (pairing of two dan-
gerous permissions used simultaneously to perform malicious
or benign behavior) in applications using a permission graph.
During detection, the method calculates benign and malicious
weight scores based on an app’s usage of permission pairs
and compares these scores to detect malwares. Similarly,
Fan et al. introduced GefDroid [3] in 2019, which extracts API
usage patterns by analyzing the structural features of sensitive
APIs within subgraphs corresponding to code classes in apps.
This approach analyzes graph similarity between applications

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9218 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

and performs unsupervised clustering of malicious app fami-
lies, incorporating community detection techniques. Wu et al.
also employed social network analysis to analyze FCGs and
introduced MalScan [4]. This method analyzes the centrality
of sensitive API calls in FCGs to generate feature vectors.
It relies on the centrality distributions of sensitive API calls
for classification. MaMaDroid [5] models API call sequences
(or abstracted sequences at class or package levels) in function
call graphs as Markov chains for detection and classification.

In 2020, Surendran et al. introduced Gsdroid [6], which
represents the behavior of applications using system call
graphs. They normalize the call frequency of system calls as
their proposed graph signals and combine these graph signal
features with machine learning techniques for classification.
Also in 2020, Niu et al. [7] extracted API call sequences from
FCGs, followed by further extraction of opcodes associated
with API calls. Finally, they employed LSTM to train and
learn from opcode-level call sequences.

In 2021, Wu et al. introduced HomDroid [8]. It begins
with community detection on FCGs and employs homogeneity
analysis to identify the most suspicious subgraphs. It then
generates features from the sensitive APIs’ occurrences, quan-
tities, and proportions in the subgraphs. Machine learning is
subsequently applied to learn from the feature vectors.

These methods often break the feature correlations during
the feature vectorization. Thus, we employ graphs and GNNs
to represent and learn these features respectively.

B. Behavioral Analysis Detection Methods Based on GNNs

This category of methods models behaviors of applications
using graph. They utilize GNNs or graph embedding to learn
the topological and node features of graphs, and they typically
belong to the task of graph classification.

In 2021, Xu et al. [9] proposed an Android malware detec-
tion method based on FCG embedding. They used Word2Vec
to vectorize opcodes and combined it with the SIF network
for function embedding. This embedding was used as node
features in the FCG to generate graph embeddings through
Struct2Vec, ultimately leading to malware detection based on
these embeddings. Similarly, Cai et al. [10] used API call
sequences as a corpus to obtain function embeddings using
natural language processing techniques. They fed the FCGs
with these embeddings to GNNs to perform classification.

In 2022, Yumlembam et al. [11] utilized GNNs to generate
API graph embeddings based on centrality measures. They
combined these embeddings with permissions and intents for
malware detection.

In 2023, Wu et al. introduced DeepCatra [12], which tracks
the call traces of key APIs in FCGs. It considers relationships
such as intent and ICC (Inter-Component Communication) and
connects edges accordingly. DeepCatra employs a Bi-LSTM
to learn call traces and utilizes GNNs to learn abstract flow
graphs, combining information for detection. In the same
year, Wu et al. [13] presented another approach in which
they encoded opcodes in functions using one-hot encoding.
They calculated node importance based on centrality and
weighted APIs based on their protection levels corresponding
to permissions. The construction of the graph treated the FCG

as an undirected graph. They used a breadth-first algorithm
to create sensitive function subgraphs of sensitive APIs and
their neighbors within a two-hop distance. They combined
API features with graph structure and employed GNNs for
malware detection. Shi et al. proposed SFCGDroid [14], where
they used API call sequences as a corpus to obtain function
semantics using the Skip-gram method. They also incorporated
social network triple information of sensitive APIs as function
node features and combined them with FCG structures for
malware detection. Addressing the remarkable challenge in
graph-based Android malware detection methods known as
graph structural attacks, Li et al. introduced RGDroid [15].
This method initially generates embeddings of API entities
based on an API relationship graph derived from official
Android documentation. These embeddings are used as node
features in FCGs. Additionally, RGDroid employs community
detection to partition FCGs into functional subgraphs, reducing
redundant edge connections and mitigating the impact of graph
structural attacks. Finally, it uses Graph Neural Networks to
learn and detect function call subgraphs.

Most of these methods face the issues mentioned in
Section I. Therefore, we integrate SFCGs and AST code
semantics for malware detection.

C. Association Analysis Detection Methods Based on GNNs

This category of methods models the relationships between
applications using graph. They employed GNNs or graph
embedding to learn the topological (relationship) features and
node (application) features, making this category suitable for
node classification tasks.

In 2021, Gao et al. introduced GDroid [16], which trans-
forms the problem of malware detection into a graph node
classification task. It constructs edges between applications
(APPs) and APIs based on the call relationships among APIs
and the patterns of API usage. This maps APPs and APIs
to a large heterogeneous graph and employs Graph Convo-
lutional Neural Networks (GCNs) to detect malware. Hei et
al. presented HAWK [17] in the same year. This method
builds a heterogeneous graph by considering more entities
such as APIs, permissions, permission types, classes, inter-
faces, and shared object (so) files. It utilizes a heterogeneous
graph attention network to learn relationships under different
meta-paths for the final detection. Fan et al. developed a
method [18] that constructs a heterogeneous graph using
entities like applications, app markets, publishing companies,
app names, app signatures, and developers. It also incorporates
information from different versions of the heterogeneous graph
and performs learning and detection based on spatiotemporal
heterogeneous graph information of applications.

In 2023, Huang et al. introduced WHGDroid [19], which
also builds a heterogeneous graph using multiple entities and
learn relationships through meta-paths. Additionally, WHG-
Droid incorporates features to mitigate the impact of malware
evolution and computes weights based on entity importance.

These methods emphasize inter-app relationships. However,
we focus on analyzing individual app behaviors to perform
malware detection.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9219

Fig. 1. The framework of AndroAnalyzer.

III. METHODOLOGY

To address the issues mentioned in Section I, we proposed
an intelligent analysis and detection method for Android
malware called AndroAnalyzer. Its framework, as shown in
Figure 1, consists of four main stages: pre-processing stage,
graph generation stage, code parsing stage, and graph classifi-
cation stage. In the following sections, we will provide detailed
descriptions of each stage.

A. Pre-Processing Stage

In the preprocessing stage, we utilize Androguard [21] to
perform reverse engineering on Android APK files. We extract
the code from their Dex files by decompiling these files. The
extracted code will be used for subsequent graph generation
and function code parsing. It’s worth noting that Andro-
Analyzer does not necessarily rely on function call graphs
generated by Androguard [21]. Depending on specific analysis
requirements, different analysis tools can be used to obtain
function call graphs at various levels of granularity. The choice
to use Androguard here primarily considers the convenience
of implementing the solution.

Androguard [21] is an widely used Python tool for stat-
ically analyzing Android applications. It can handle tasks

like analyzing Dex, ODex, APK files, Android’s binary XML
files, and Android resources. We chose Androguard as our
decompilation tool for its accuracy in generating FCGs.

Furthermore, this research did not specifically focus on
applications with obfuscation or packing techniques. For
applications that have been packed, we can employ meth-
ods like those presented in [26], [27], and [28] to unpack
them and obtain valid Dex files. After obtaining the valid
Dex files, we can continue the analysis using andro-
guard.misc.AnalyzeDex(). This function will still provide us
with DalvikVMFormat and Analysis objects, allowing us to
proceed with the subsequent analysis steps.

B. Graph Generation Stage

During the graph generation stage, we utilize the function
call information extracted from the Dex code files to construct
a Sensitive Function Call Graph (SFCG) using a sensitive API-
based algorithm. Subsequently, we conduct social network
analysis on function nodes within this FCG, to generate cor-
responding structural feature vectors. By focusing on sensitive
APIs, we concentrate on malicious behaviors, thereby reducing
the graph’s scale and mitigating computational and stor-
age overhead. Simultaneously, we calculate structural feature

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9220 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

vectors for each node in the FCG via social network analysis.
This compensates for the limited capability of GNNs in
learning topological features.

1) Sensitive Function Call Graph Generation: We utilize
the FCG to characterize the macro-level behavior of Android
applications. However, considering the substantial scale of a
complete FCG, it imposes remarkable computational and stor-
age overhead for subsequent processing. Hence, we narrow our
focus to sensitive behaviors and initiate the graph construction
from sensitive API calls. We then trace their ancestor nodes
while disregarding other branches unrelated to sensitive APIs
in the FCG.

The definition of the Sensitive Function Call Graph (SFCG)
is presented as Definition 1.

Definition 1: Sensitive Function Call Graph (SFCG): A
directed graph SFCG f = (V, E) for one Android application
f , where V is a set of function nodes and E is a set of func-
tion call relation directed edges. V = {Vinternal , Vexternal},
Vinternal represents the internal nodes in the SFCG, which are
nodes corresponding to functions for which the corresponding
Smali code can be obtained. Vexternal represents the external
nodes in the SFCG, which are nodes corresponding to external
APIs for which the corresponding Smali code cannot be
obtained. Most external nodes are Android API nodes; among
them, APIs strongly associated with malicious behavior or
sensitive operations are referred to as sensitive APIs. E =
{(vi , v j)|vi , v j ∈ V, vi calls v j }. If f invokes sensitive
APIs, V only includes sensitive APIs and their ancestors,
otherwise, V includes all nodes of complete FCG.

In selecting sensitive APIs, previous work [29] proposed
API-Permission mapping to obtain sensitive API lists. How-
ever, this list contains tens of thousands of APIs, which can
introduce remarkable computational and storage overhead dur-
ing subsequent analysis and feature generation. Additionally,
APIs in the PScout list may suffer from outdated versions.
Therefore, considering these factors, we opted for the Dan-
gerous API list from CamoDroid [30], which is proposed in
2022 and includes a total of 401 sensitive APIs.

Based on the aforementioned sensitive APIs, we have
devised an algorithm for generating the SFCG, as described
in Algorithm 1. Notes that if an Android application does not
invoke any sensitive APIs, its complete FCG will be returned.
The core aim of this methodology is to discern and categorize
the distinct behaviors of benign versus malicious entities,
primarily through the analysis of sensitive API usage patterns.
However, regardless of how the list of sensitive APIs is chosen,
it is possible for applications not to invoke any of these
sensitive APIs. This could be due to updates and iterations
of APIs or because the application does not involve any
sensitive operations (purely benign software). If applications
that do not invoke any sensitive APIs are simply classified
as benign software, it may result in false negatives for some
malicious software. It is imperative, therefore, to conduct a
thorough analysis of such cases to accurately differentiate
between benign and malicious behaviors rather than generating
an empty graph devoid of nodes and edges.

2) Structural Feature Vectors Generation: Once we obtain
the SFCG, we further analyze its structural features via

Algorithm 1 SFCG Generation Algorithm
Input: Sensitive API list Listapi , Androguard Analysis object

als f for Android application f
Output: Final Sensitive Function Call Graph SFCG f

1: Initialization SFCG f ← empty directed graph
2: for each api ∈ Listapi do
3: if als f . f ind_methods(api) = T rue then
4: Graphtemp ← empty directed graph
5: Queue unaccessed_nodes ← empty queue
6: List accessed_nodes ← empty list
7: unaccessed_nodes.put (api)
8: while unaccessed_nodes is not empty do
9: node← unaccessed_nodes.get ()

10: if node /∈ accessed_nodes then
11: xre f _nodes ← node.get_xre f _ f rom()

12: for xnode ∈ xre f _nodes do
13: Graphtemp.add_node(xnode)
14: Graphtemp.add_edge(xnode, node)
15: if xnode /∈ accessed_node then
16: unaccessed_nodes.put (xnode)
17: end if
18: end for
19: accessed_nodes.append(node)
20: end if
21: end while
22: SFCG f .add_nodes_ f rom(Graphtemp.nodes)
23: SFCG f .add_edges_ f rom(Graphtemp.edges)
24: end if
25: end for
26: if f does not invoke any api ∈ Listapi then
27: SFCG f ← als f .get_call_graph()

28: end if
29: Return SFCG f

social network analysis. Considering that the FCG is a
graph network with community characteristics, and sev-
eral works [4], [8], [31] have achieved good detection
results by performing social network analysis on FCGs,
we adopt this design to enrich topological information. These
properties are used as node structural features to allow
the GNN to learn the global topological structure of the
graph better. The specific graph structural properties include
degree_centrality, in_degree_centrality, out_degree_centrality,
katz_centrality, closeness_centrality, betweenness_centrality,
harmonic_centrality, clustering, square_clustering and pager-
ank. The above structural properties can be obtained via
NetworkX [32].

C. Code Parsing Stage

In the code parsing stage, the Smali code from the Dex files
is parsed into abstract syntax trees (ASTs). ASTs can represent
the structured information of the code, making it easier to
learn the code semantics. They also offer some resistance to
code obfuscation and have been used in code representation-
related tasks [33], [34] such as code classification, code search,
and clone detection. After generating the AST corresponding

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9221

Listing. 1: An example of Smali code snippet.

Listing. 2. The AST corresponding to the code snippet in Listing 1.

to a function, the AST2Vec model generates structured code
semantic feature vectors. Additionally, API feature vectors are
generated using one-hot encoding. These two feature vectors
are then combined to create fused semantic feature vectors,
which represent the micro-behavior of the function node itself.

1) Abstract Syntax Tree Generation: For internal nodes in
the FCG, their code can be obtained through decompilation,
and further parsing of the code can be done using andro-
guard.decompiler.dad.decompile with DvMethod. This process
helps obtain the AST corresponding to the code of the internal
function nodes.

Listing 1 shows the Smali code snippet for a function in
a particular sample (MD5: bca0902dd49b2ae45ca493691d8
6956a), while Listing 2 displays the AST obtained after
parsing this code. Specifically, the parsed AST consists of six
parts including body, comments, flags, params, ret and triple.

2) AST Semantic Feature Vectors Generation: To vectorize
the parsed AST and enable GNNs to learn the structured
code semantics, we design a structured code semantics extrac-
tion algorithm called AST2Vec, based on Natural Language
Processing (NLP) technologies. In developing the AST embed-
ding generation algorithm, we considered several key factors:

First, parsed ASTs vary in length, posing challenges for tra-
ditional Word2vec [35], [36] or TF-IDF-augmented Word2vec
methods, which produce long code semantic vectors requiring
padding or truncation to standardize lengths. Such adjust-

ments can disrupt AST structures and lead to semantic loss.
Second, introducing specialized neural networks to extract
structured code semantics from ASTs [37], [38] can improve
performance and behavior understanding. However, applying
these methods in Android applications involves important
considerations:

1) Specialized semantic extraction networks need
clearly defined downstream tasks. For instance,
the code2vec [37] model is trained with function
functionality prediction tasks, and the tree-based [38]
model is trained with defect prediction tasks.
In Android environments, it is difficult to rapidly
create a task-specific dataset for internal function code.
In contrast, text-based models only require a substantial
corpus for training.

2) Neural network-based models take longer to generate
semantic vectors than text-based models, significantly
increasing analysis time for Android applications with
many function nodes.

Therefore, algorithms were narrowed down to Doc2Vec [39]
and the pre-trained model SBert [40]. While the pre-trained
SBert model excels in capturing lexical semantics, it may
exhibit remarkable disparities when applied to the code
analysis domain and has limited learning abilities regarding
code structure and syntax. On the other hand, the Doc2Vec
model is well-suited for handling long-text scenarios like
ASTs. Furthermore, after training on a large corpus of ASTs,
it demonstrates a good capability to capture key terms and
syntactic structures within the AST. Consequently, it can
generate more suitable structured code semantic vectors for
ASTs.

Therefore, we opted for the Doc2Vec-based approach
to design the AST Structured Code Semantic Generation
Algorithm, denoted as AST2Vec. The AST2Vec algorithm
takes as input a pre-trained Doc2Vec model m and the parsed
AST text ast , and it outputs the structured code semantic
vector V ectorast . First, the AST text is tokenized, splitting it
into a sequence of tokens, and punctuation used for separation,
such as “”’, and “,”, is removed from the sequence. Secondly,
as seen in Listing 2, the structure of the AST text is represented
using nested “[” and “]” symbols. To preserve the structural
information of the AST without disruption, the “[” and “]”
symbols are retained. These operations yield the processed
AST sequence, and subsequently, the corresponding AST
semantic feature vector is generated using the semantic vector
generation function of the model m. Notes that in this research,
the Doc2Vec model’s implementation is done using Gensim
[41].

D. Graph Classification Stage

In the graph classification stage, the previously obtained
structural feature vectors and code semantic feature vectors are
fused as node features. The SFCG with the node features then
converted into matrix form for learning by the GNN model.

1) Node Features Fusion: The node features are formed by
integrating semantic features from code parsing with struc-
tural features acquired through social network analysis. The

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9222 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. Structure of node feature vectors.

structure of node feature vectors is illustrated in Figure 2,
encompassing comprehensive information about code and
structure for each node.

The design of each component is as follows:

• Node type: This component is used to label different node
types. Internal nodes are labeled 0, while external nodes
are labeled 1.

• Method flag: This component represents flag information
for functions. For internal nodes, they have flag infor-
mation encoded using one-hot encoding. The vector has
a total length of 17. For external nodes that lack flag
information, a zero vector of length 17 is used.

• AST semantic feature: This component represents the
structured code semantics of functions. For internal
nodes, their Smali code is available, and the correspond-
ing feature vector with length of 200 is generated using
AST2Vec algorithm. For external nodes, the valid code
cannot be obtained, and a zero vector of length 200 is
used.

• API semantic feature: This component encodes the API
calls, as complementary to the semantic information of
external nodes. It is set as a zero vector of length 402 for
internal nodes. For external nodes, it is one-hot encoded
based on their specific API information with respect to the
sensitive API list. The sensitive API list contains a total
of 401 APIs. If an external node is not within this list,
the 402nd position is set to 1, representing “other APIs”.
Consequently, the vector has a total length of 402.

• Structural feature: This component represents the topo-
logical information of the function, which can be obtained
through social network analysis.

2) Graph Neural Network Model: The GNN employed
in AndroAnalyzer, adopting the model architecture from
P O O Lg [42] is depicted in the lower-left portion of Figure 1.
Initially, it performs three consecutive graph convolution oper-
ations and concatenates the features produced at each layer.
This aggregation uses skip connections to alleviate the com-
mon problem of over-smoothing in graph neural networks [43].
Subsequently, a self-attention graph pooling operation [42] is
conducted to retain important nodes, enhancing the detection
model’s generalization capability. The output of the graph
pooling is further subjected to a readout operation (concate-
nation of average pooling and max pooling). Finally, the
readout features are fed through a multi-layer perceptron
(MLP) for classification. In fact, the detection performance of
AndroAnalyzer is not contingent upon a specific GNN model
architecture. It demonstrates good performance in combination
with various GNNs. Based on the comprehensive performance

TABLE I
CONSTRUCTION OF DatasetC I C

in different tasks during the evaluation section IV, we selected
P O O Lg [42].

IV. EVALUATION

We evaluated the detection performance and generalization
capability of AndroAnalyzer. The experiment results are pre-
sented in this section.

A. Experimental Setup

The AndroAnalyzer is evaluated on a 16-node GPU cluster,
where each node has an Intel (R) Core (TM) i9-10920X
CPU @3.50 GHz with 256GB RAM and two NVIDIA
RTX 3080 GPUs, and runs Ubuntu 20.04 LTS with Linux
kernel v.5.4.0.

We deploy AndroAnalyzer in Python 3.8.

B. Datasets Description

To evaluate the various aspects of AndroAnalyzer’s per-
formance, we constructed two experimental datasets, namely
DatasetC I C and DatasetAZ . We considered the randomness
in sample selection and the appropriateness of the sample
distribution, and obtained a total of 32,200 Android samples
from CICMalDroid2020 [24] and AndroZoo [25].

1) DatasetC I C : The CICMalDroid2020 [24] dataset com-
prises application samples from five different categories:
Adware, Banking Malware, SMS Malware, Mobile Riskware,
and Benign.

In the experiment, we constructed the dataset DatasetC I C
based on CICMalDroid2020. Specifically, to ensure a balanced
dataset for binary classification while taking into account
the number of samples in each class in CICMalDroid2020,
we randomly selected 8624 samples from the dataset in a
rough proportion of 1(Benign): 1 (Malware). we used it
for evaluating the performance of AndroAnalyzer in binary
classification (malware detection) and multi-class classification
(malware family recognition) tasks, and details can be found
in Table I.

2) DatasetAZ : AndroZoo [25] is a continuously grow-
ing collection of Android applications. It gathers apps from
various sources, including the official Google Play Store,
and currently contains 23,081,907 distinct APKs. Each APK
undergoes analysis by numerous antivirus products to deter-
mine which apps are detected as malware.

In the experiment, we constructed the dataset DatasetAZ
based on AndroZoo. Specifically, We utilized Andro-
ZooDownloader (https://github.com/E0HYL/AndrozooDown

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9223

TABLE II
CONSTRUCTION OF DatasetAZ

loader) to download 23,576 samples from the latest Android-
Zoo dataset from 2010 to 2022. The samples for each year
were filtered based on Vt_scan_date. Furthermore, to ensure
the nature of the samples, benign samples were selected with
the condition vt_detection = 0, meaning that all detection
engines in VirusTotal did not classify them as malicious
software. Malicious samples were selected with the condition
vt_detection >= 10, indicating that at least ten detection
engines in VirusTotal identified them as malicious software.
Notes that the maximum download limit was set to 1000 when
downloading samples to ensure dataset balance for the binary
classification task. However, some samples couldn’t be down-
loaded successfully due to network issues, resulting in the
distribution shown in Table VII. The decrease in the number of
malicious samples in 2022 is because only around 300 samples
met the criteria in the latest AndroZoo list, and only 168 of
them were successfully downloaded.

We used it to evaluate AndroAnalyzer’s detection and
learning capabilities in an environment close to the real world
and the model’s generalization ability over time. The details
of its construction are shown in Table VII.

C. Evaluation Metrics

The widely used metrics for evaluating the performance
of our detection method are Accuracy, Precision, Recall, and
F1(F-score).

Accuracy = (T P + T N)/(AL L)

Precision = T P/(T P + F P)

Recall = T P/(T P + F N)

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall)
(1)

where TP (True Positive) is the number of malicious Android
apps that are correctly labeled as malicious, FN (False Neg-
ative) is the number of benign Android apps that are falsely
labeled as malicious apps. FP (False Positive) is the number
of malicious Android apps falsely labeled as benign, and
TN (True Negative) is the number of benign Android apps
correctly labeled as benign.

Notes that the specific calculation of evaluation metrics
was implemented using the metrics module from the sklearn
library. In the calculation process, the average parameter was
set to ‘binary’ for binary classification tasks, as defined in
Equation 1. For multi-class classification tasks, the average
parameter was set to ‘weighted’, meaning that the metrics for

each class were computed as a weighted average based on the
number of samples in each class.

D. Comparison Methods

To evaluate our approach, we selected a set of baseline
methods and multiple GNNs for comparison. Specifically, the
following methods were included:

1) Baseline Methods: DroidDetector [44]: The method
extracted 192 features from the static and dynamic analysis
results of Android applications and used DBN deep learning
models to detect and classify malware.

HMMDetector [45]: The method was based on the Hidden
Markov Model and structural entropy for Android malware
detection.

ICCDetector [46]: The method was based on ICC-related
features to detect Android malware.

MaMaDroid [5]: The method built Markov chains from the
sequences obtained in the function call graph and used them
for Android malware detection.

PermPair [2]: The method extracted the permission pairs in
the application manifest file to construct a graph distinguishing
benign from malware.

The methods described above were all implemented by
modifying the code provided in the work of Molina et al.
[47].

2) Multiple GNNs: Combine our method with multiple
GNNs for detection and classification, including GAT [48],
GATv2 [49], GCN [50], GCNv2 [51], GIN [52], and Graph-
SAGE [53]. The basic GNNs mentioned above were all
implemented using PyG (PyTorch Geometric).

E. Evaluation Results

This section will analyze the results of various experiments
to answer the research questions (RQs) as follows.

RQ1: How does the sensitive function call graph gener-
ation algorithm perform in reducing the graph size?

To verify the performance of the SFCG generation algorithm
in reducing the graph size, we collected relevant scale
information of the complete FCGs and the SFCGs on the
dataset DatasetC I C . Specifically, we recorded various metrics,
including the APK size, Dex size, the number of nodes, and
edges in the complete FCG, and the number of nodes and
edges in the SFCG for different categories and the dataset.
The detailed data is presented in Table III.

When comparing the statistics of the complete FCG and
the generated SFCG, we notice that the data for the sensitive
function call graph is nearly one percent of the complete func-
tion call graph, effectively reducing storage and computational
costs during subsequent processes.

To further discuss the effectiveness of the SFCG generation
algorithm, we conducted a detailed analysis and visualization
of the complete FCG and the SFCG for a trojan sample
(MD5: bca0902dd49b2ae45ca493691d86956a). The complete
FCG contains 484 nodes and 1467 edges, while the SFCG
contains 20 nodes and 22 edges.

Then, we used centrality (degree centrality) analysis to
visualize the results of the FCG after social network anal-
ysis. This visualization is shown in Figure 3. The complete

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9224 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE III
AVERAGE STATISTICS FOR DIFFERENT FUNCTION CALL GRAPHS AND SAMPLE SIZES ON DatasetC I C

Fig. 3. Distribution of degree centrality of complete and sensitive function
call graphs generated by a trojan sample.

FCG has numerous nodes and edges, and most nodes
have similar degree centrality. This complexity adds remark-
able analysis difficulty and computational cost for further
analysis. In contrast, the SFCG has removed most irrel-
evant nodes, focusing on two sensitive behavioral chains
related to network behavior: getAllNetworkInfo and getAc-
tivateNetworkInfo. This is consistent with the behavior
report in VirusTotal (only network communication with no
other sensitive behaviors) and the characteristics of Trojan
behavior.

Furthermore, the distribution of degree centrality in the
SFCG is clearer. Light blue nodes represent sensitive API
nodes, or starting nodes of sensitive behavioral chains,
dark blue nodes are process nodes within the chains, and
purple nodes are composite nodes that are part of mul-
tiple behavioral chains. This clear visualization allows for
a better understanding of the functionality and importance
of different nodes within the behavioral chains. Combined
with different social network analysis results, it provides a
more granular distinction between nodes in the behavioral
chains.

RQ2: What are the optimal parameter settings for the
AndroAnalyzer model?

In the deployment of AndroAnalyzer, we employed the
following parameters:

For training the AST2Vec model based on Doc2Vec: Con-
sidering a balance between rich semantic expression and vector
quality, vector si ze is set to 200, epochs is set to 50 and
workers is set to 8. The training corpus consisted of the AST
content parsed from the samples in the experimental dataset.

For training the detection and classification model based on
GNN: DataLoader’s batch si ze is set to 32, the optimizer is
Adam, and the loss function is CrossEntropyLoss, widely used
for classification tasks.

Fig. 4. Performance of different hyperparameters under biclassification and
multiclassification tasks.

In addition to the aforementioned parameters, it is necessary
to determine the hyperparameters, namely the learning rate
(lr) and the hidden layer dimension. To find the optimal
values for these hyperparameters, we conducted experiments
using a training-to-testing data split ratio of 7:3 (a commonly
used ratio) and 300 training iterations (to ensure convergence
and find the best performance). We employed a grid search
approach to systematically test several commonly used values
for the learning rate, including 0.01, 0.001, and 0.0001. Sim-
ilarly, we explored various dimensions for the hidden layers,
including 128, 256, and 512. This comprehensive search
strategy allowed us to identify the hyperparameter values that
yield the best model performance.

AndroAnalyzer’s performance on malware detection (binary
classification) accuracy on DatasetC I C is illustrated in
Figures 4a. The red circles denote the hyperparameter combi-
nations that correspond to the best detection results in these
figures. Except 0.01, the remaining learning rates showed sim-
ilar performance, with three sets of hyperparameters achieving
an accuracy of 99.19%. Considering that the 128-dimensional
hidden layer is noticeably different from the node feature
dimension of 630, implying weaker abstract feature capabili-
ties and fitting abilities, and that the 512-dimensional training
result exhibited some degree of overfitting, a balanced choice
would be a learning rate of 0.001 and a hidden layer dimension
of 256 for binary classification tasks.

AndroAnalyzer’s performance on malware family recogni-
tion (multi-class classification) accuracy on DatasetC I C is
depicted in Figures 4. The optimal hyperparameters were
found to be a learning rate of 0.0001 and a hidden layer
dimension of 512, while the second-best option was a learning
rate of 0.0001 with a hidden layer dimension of 256. Taking
into consideration the overfitting observed with a hidden layer
dimension of 512 and the hyperparameter selection in binary
classification, we opted for a final set of hyperparameters in

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9225

TABLE IV
PERFORMANCE OF ABLATION EXPERIMENTS WITH DIFFERENT FEATURES ON DatasetC I C

the multi-class classification task, which consists of a learning
rate of 0.0001 and a hidden layer dimension of 256.

RQ3: How effective are the fused features of AndroAn-
alyzer? (Ablation study)

To evaluate the effectiveness of the proposed structured code
semantics on detection performance, we conducted experi-
ments with different feature combinations and feature fusion
settings under the optimal hyperparameters obtained in RQ2.
The training set to test set ratio was maintained at 7:3. The
specific results are shown in Table IV.

From the results of binary classification, we observed that
the top-performing feature combinations in terms of accuracy
all include the AST structured code semantic features, with
the “All Features” (Our method) being the best.

The results of multi-class classification show that the overall
trend is similar to binary classification. The key difference is
that the gap in accuracy between the “All Features” and the
single AST semantic feature has increased. This suggests that
the fusion of API semantic features and structural features
allows the classification model to better distinguish between
complex application types, thus adapting more effectively to
diverse and real-world application environments.

RQ4: How does the performance of the AST2Vec
algorithm compare to the pre-trained model SBert and
Code2Vec in the extraction of structured code semantics?

To assess the effectiveness of implementing the structured
code semantics extraction module based on AST, we com-
pared the performance of AndroAnalyzer using a self-trained
Doc2Vec model, a pretrained SBert model and a pretrained
Code2Vec model. We conducted a series of tests covering
various training ratios and classification tasks to evaluate the
detection and classification performance. The specific results
are presented in Figure 5.

The results of the binary classification task show that
the AST2Vec algorithm based on Doc2Vec outperforms
the SBert-based and Code2Vec-based semantic extraction
modules. However, the SBert-based approach still achieves
reasonably good detection performance. This is because pre-
trained models can extract word semantics, allowing them
to capture some degree of semantics present in the AST.
However, code is not just plain text. It also contains program-
ming language-specific syntax and semantics. Moreover, ASTs
encapsulate structured code semantics. Therefore, AST2Vec,
trained on an AST corpus, is more targeted at extracting struc-
tured code semantics, leading to better detection performance.

Fig. 5. Accuracy of binary and multi-class classification with different
model-based semantic extraction modules on DatasetC I C .

Fig. 6. Comparison of bi-classification performance of different methods on
DatasetC I C .

The performance of the Code2Vec-based semantic extraction
module is slightly inferior to other methods for several reasons.
Firstly, it was trained on a generic Java code dataset, making
it less aligned with the target scenario’s code understanding
tasks compared to AST2Vec. More crucially, the Java parser
within the Code2Vec model encounters errors with a subset
of Java code transformed by Androguard, leading to some
loss of semantic understanding and consequently impacting
detection performance. The results for multiclass classification
are consistent with those for binary classification; however, the
difference between Code2Vec-based and SBert-based models
has narrowed. This reduction in disparity reflects Code2Vec’s
enhanced capability for understanding code semantics in more
complex scenarios.

RQ5: How does the overall performance of AndroAna-
lyzer compare to the baseline methods?

To assess the overall performance of AndroAnalyzer,
we compared its detection performance with five baseline
methods and six GNNs combined with AndroAnalyzer under
the optimal parameters obtained in RQ2. The specific results
are presented in Table V and Table VI.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9226 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE V
PERFORMANCE OF ANDROANALYZER AND BASELINE METHODS ON DatasetC I C

TABLE VI
PERFORMANCE OF ANDROANALYZER AND MULTIPLE GNNS ON DatasetC I C

First, we compared its performance in the binary classifica-
tion task. At a ratio of 0.9, the detection accuracy is compared
in Figure 6. In the comparison with baseline methods, it can be
observed that AndroAnalyzer achieved the highest accuracy.
ICCDetector and MaMaDroid also demonstrated decent detec-
tion performance, while HMMDetector performed moderately.
Additionally, DroidDetector exhibited noticeable overfitting
during the detection, achieving an accuracy of 99.49% on
the training set but dropping to 53.75% on the testing set.
PermPair may suffer from its need for a sufficient number
of learning samples to construct a permission pair graph that
effectively represents the behavior of that type of samples.

In the comparison of AndroAnalyzer with typical GNN-
based methods, it was observed that all methods achieved
detection accuracy of over 99.40%. This suggests that Andro-
Analyzer is not reliant on a specific GNN model design.
Its rational modeling approach and effective feature fusion
guarantee its fundamental detection performance. Different
GNNs can be chosen based on various detection requirements
and real-world scenarios. Additionally, AndroAnalyzer and
AndroAnalyzer+GCNv2 achieved the highest detection accu-
racy of 99.65%.

In the performance comparison for the multi-classification
task, also at a ratio of 0.9, the detection accuracy comparison
is illustrated in Figure 7. The overall situation is similar

Fig. 7. Comparison of multi-classification performance of different methods
on DatasetC I C .

to that in the binary classification task. However, it can be
observed that both Androanalyzer and MaMaDroid maintained
performance similar to that in the binary classification task.
This suggests that both possess good learning capabilities for
samples’ behavior.

Moreover, compared with multiple GNN-based methods, all
methods achieved detection accuracy of over 98.5%. Andro-
Analyzer demonstrated the best detection performance at
99.08%. This validates that the self-attention pooling layer in
the graph filters out some noise or redundant nodes, allowing
for the learning of more fundamental behaviors that represent
a particular type of program.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9227

TABLE VII
GENERALIZATION ABILITY OF THE COMBINATION OF ANDROANALYZER AND DIFFERENT GNNS ON DatasetAZ

Fig. 8. Comparison of bi-classification performance of different ratios on
DatasetC I C .

In comparing detection accuracy for the binary classifi-
cation task across different training set ratios, the results
are illustrated in Figure 8. In the comparison with baseline
methods, AndroAnalyzer consistently exhibited the best detec-
tion performance across all ratios. Compared with multiple
GNNs combined with AndroAnalyzer, it can be observed that
the overall performance of all methods increases with the
growth of the training set ratio. AndroAnalyzer, while showing
relatively poorer performance at lower ratios, becomes one
of the top-performing models as the ratio increases. This
behavior may be attributed to the graph self-attention pooling
discards some of the node information to enhance the model’s
generalization ability. Hence, it may not be able to learn
enough about sample behaviors at lower ratios. However, the
model achieves remarkable performance once the sample size
is sufficient, allowing for a more comprehensive learning of
behavioral essence. This also underscores the model’s demand
for training sample quantity. The overall situation for the
multi-classification task is similar to the binary classification
task and will not be repeated here.

RQ6: How does AndroAnalyzer generalize to detect new
samples?

To evaluate the generalization capability of AndroAna-
lyzer on new samples at different time points, we conducted
evaluation on the DatasetAZ . We used a training set pro-
portion 0.9 and trained and tested the model using samples
from 2010 to 2018. Subsequently, the trained model was used
to test samples from 2019 to 2022. The specific results are
presented in Table VII.

Firstly, in terms of the generalization performance of Andro-
Analyzer, the effectiveness achieved in training from 2010 to
2018 reached 96.76%. Although this is a decrease compared to
the performance achieved on DatasetC I C , it is expected due
to the diverse and randomly selected samples in DatasetAZ ,

which are closer to a real-world environment. We cannot
control whether the collected dataset has the same distribution
or covers all malicious families. Therefore, a decrease in
performance is inevitable, and the magnitude of the decrease
remains acceptable, maintaining a high detection accuracy.
Secondly, looking at the detection performance on samples
from 2019 to 2022, although there is a slight decrease, the
overall detection performance remains above 92%. There
is no remarkable drop in performance. Thirdly, AndroAn-
alyzer exhibit the comparable performance with multiple
GNN-based methods in the initial training stage, achieving
96.76% accuracy. Furthermore, regarding generalization per-
formance from 2019 to 2022, AndroAnalyzer outperforms
multiple GNNs in terms of accuracy and stability.

V. DISCUSSION

A. Robustness Against Structured Attacks

Graph-based Android malware detection is susceptible to
graph structural attacks [23]. These attacks alter the graph
structural features by adding nodes, deleting nodes, adding
edges, and rerouting, thereby affecting the detection. This is
largely attributed to the prevalent usage of node statistical
or structural features in existing graph-based detection meth-
ods [4], [5], which tend to overlook the code semantics.

To tackle the challenge of graph structural attacks, Li et
al. [15] employed community detection on FCGs to partition
functional subgraphs, aiming to reduce redundant connections
between benign and malicious parts. They also integrated API
information extracted from the official Android documentation
into node features to mitigate the impact of graph structural
attacks.

Similarly, AndroAnalyzer reduces redundancy by focusing
on sensitive behavior chains. Furthermore, in the context of
semantic fusion, besides API semantics, AndroAnalyzer lever-
ages ASTs to extract structured code semantics for self-written
nodes along the behavior chains. This approach allows the
detection model to learn functional information. In this way,
AndroAnalyzer achieves efficient detection while reducing the
influence of graph structural changes on node features.

B. Graph Neural Network Interpretability

Although artificial intelligence technologies enable rapid
and accurate malware detection, neural networks are often
utilized as black boxes. Regardless of the detection model’s
accuracy, it is crucial to understand the reasons behind the
model’s decisions and the nature of the learned features,

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

9228 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

particularly when dealing with unknown malicious software in
real-world scenarios. Therefore, researchers [54] have explored
the use of graph interpreters to generate relevant information.
In future work, we will attempt to employ graph interpreters to
explain the results of the trained graph classification model.
This will involve generating subgraph structures and nodes
that play a remarkable role in the model’s decisions. This
approach can reflect the call chains of malicious behavior
and key functions, providing valuable insights for malware
analysis.

VI. CONCLUSION

In this paper, we proposed AndroAnalyzer, a method for
Android malware detection that focuses on sensitive behavioral
chains and integrates AST-based code semantics. Initially,
Androanalyzer analyzes the APK files to obtain the FCGs, and
extracts the SFCG via the proposed algorithm. It characterizes
the macro-level behavior of the application. Subsequently,
AndroAnalyzer parses the code of functions in the SFCG.
It utilizes AST to extract structured code semantics, enabling
to understand the micro-level behavior of each function.
Furthermore, AndroAnalyzer generates code semantic fea-
tures via AST2Vec, and combines them with API semantic
and structural features, resulting in SFCG with fused node
features. Finally, these graphs are input into a GNN with
self-attention pooling for training, yielding an intelligent clas-
sifier for Android malware detection. Experimental results
demonstrate that AndroAnalyzer achieves superior detection
performance in binary and multiclass tasks compared to the
baseline methods on two datasets. Additionally, it exhibits
good generalization capabilities in detecting samples of 2019-
2022. Moreover, in the future, we plan to employ graph
interpreters to generate auxiliary information for analyzing
malicious behaviors and identifying key functions.

REFERENCES

[1] A. Kivva. (2023). Smartphone Malware Statistics, Q1. [Online].
Available: https://securelist.com/it-threat-evolution-q1-2023-mobile-
statistics/109893/

[2] A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android malware
detection using permission pairs,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 1968–1982, 2019.

[3] M. Fan et al., “Graph embedding based familial analysis of Android
malware using unsupervised learning,” in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng. (ICSE), May 2019, pp. 771–782.

[4] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “MalScan:
Fast market-wide mobile malware scanning by social-network centrality
analysis,” in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2019, pp. 139–150.

[5] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),” ACM Trans.
Privacy Secur., vol. 22, no. 2, pp. 1–34, 2019.

[6] R. Surendran, T. Thomas, and S. Emmanuel, “GSDroid: Graph signal
based compact feature representation for Android malware detection,”
Exp. Syst. Appl., vol. 159, Nov. 2020, Art. no. 113581.

[7] W. Niu, R. Cao, X. Zhang, K. Ding, K. Zhang, and T. Li, “OpCode-
level function call graph based Android malware classification using
deep learning,” Sensors, vol. 20, no. 13, p. 3645, 2020.

[8] Y. Wu, D. Zou, W. Yang, X. Li, and H. Jin, “HomDroid: Detecting
Android covert malware by social-network homophily analysis,” in
Proc. 30th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2021,
pp. 216–229.

[9] P. Xu, C. Eckert, and A. Zarras, “Detecting and categorizing Android
malware with graph neural networks,” in Proc. 36th Annu. ACM Symp.
Appl. Comput., Mar. 2021, pp. 409–412.

[10] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, “Learning features
from enhanced function call graphs for Android malware detection,”
Neurocomputing, vol. 423, pp. 301–307, Jan. 2021.

[11] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, “IoT-based Android
malware detection using graph neural network with adversarial defense,”
IEEE Internet Things J., vol. 10, no. 10, pp. 8432–8444, May 2023.

[12] Y. Wu, J. Shi, P. Wang, D. Zeng, and C. Sun, “DeepCatra: Learning
flow- and graph-based behaviours for Android malware detection,” IET
Inf. Secur., vol. 17, no. 1, pp. 118–130, Jan. 2023.

[13] H. Wu, N. Luktarhan, G. Tian, and Y. Song, “An Android malware
detection approach to enhance node feature differences in a function call
graph based on GCNs,” Sensors, vol. 23, no. 10, p. 4729, May 2023.

[14] S. Shi, S. Tian, B. Wang, T. Zhou, and G. Chen, “SFCGDroid: Android
malware detection based on sensitive function call graph,” Int. J. Inf.
Secur., vol. 22, no. 5, pp. 1115–1124, Oct. 2023.

[15] Y. Li, Y. Hu, Y. Wang, Y. He, H. Lu, and D. Gu, “RGDroid: Detecting
Android malware with graph convolutional networks against structural
attacks,” in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reengineering
(SANER), Mar. 2023, pp. 639–650.

[16] H. Gao, S. Cheng, and W. Zhang, “GDroid: Android malware detection
and classification with graph convolutional network,” Comput. Secur.,
vol. 106, Jul. 2021, Art. no. 102264.

[17] Y. Hei et al., “Hawk: Rapid Android malware detection through hetero-
geneous graph attention networks,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 35, no. 4, pp. 4703–4717, Apr. 2024.

[18] Y. Fan et al., “Heterogeneous temporal graph transformer: An intelli-
gent system for evolving Android malware detection,” in Proc. 27th
ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2021,
pp. 2831–2839.

[19] L. Huang, J. Xue, Y. Wang, Z. Liu, J. Chen, and Z. Kong, “WHGDroid:
Effective Android malware detection based on weighted heterogeneous
graph,” J. Inf. Secur. Appl., vol. 77, Sep. 2023, Art. no. 103556.

[20] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient Android malware
detection system based on method-level behavioral semantic analysis,”
IEEE Access, vol. 7, pp. 69246–69256, 2019.

[21] A. Desnos. Androguard/androguard: Reverse Engineering and Pen-
testing for Android Applications. Accessed: Sep. 20, 2023. [Online].
Available: https://github.com/androguard/androguard

[22] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “DAPASA:
Detecting Android piggybacked apps through sensitive subgraph analy-
sis,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8, pp. 1772–1785,
Aug. 2017.

[23] K. Zhao et al., “Structural attack against graph based Android malware
detection,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 3218–3235.

[24] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective and efficient
hybrid Android malware classification using pseudo-label stacked auto-
encoder,” J. Netw. Syst. Manag., vol. 30, no. 1, pp. 1–34, Jan. 2022.

[25] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting millions of Android apps for the research community,”
in Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Reposito-
ries (MSR), New York, NY, USA, May 2016, pp. 468–471, doi:
10.1145/2901739.2903508.

[26] L. Xue et al., “Happer: Unpacking Android apps via a hardware-
assisted approach,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1641–1658.

[27] L. Xue et al., “PackerGrind: An adaptive unpacking system for
Android apps,” IEEE Trans. Softw. Eng., vol. 48, no. 2, pp. 551–570,
Feb. 2022.

[28] L. Xue et al., “Parema: An unpacking framework for demystifying VM-
based Android packers,” in Proc. 30th ACM SIGSOFT Int. Symp. Softw.
Test. Anal., Jul. 2021, pp. 152–164.

[29] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android permission specification,” in Proc. ACM Conf. Comput.
Commun. Secur., Oct. 2012, pp. 217–228.

[30] F. Faghihi, M. Zulkernine, and S. Ding, “CamoDroid: An Android
application analysis environment resilient against sandbox evasion,”
J. Syst. Archit., vol. 125, Apr. 2022, Art. no. 102452.

[31] D. Zou et al., “IntDroid: Android malware detection based on API
intimacy analysis,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3,
pp. 1–32, 2021.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2901739.2903508

GONG et al.: SENSITIVE BEHAVIORAL CHAIN-FOCUSED ANDROID MALWARE DETECTION FUSED 9229

[32] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proc. 7th Python
Sci. Conf., G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena,
CA USA, 2008, pp. 11–15.

[33] N. D. Q. Bui, Y. Yu, and L. Jiang, “InferCode: Self-supervised
learning of code representations by predicting subtrees,” in Proc.
IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), May 2021,
pp. 1186–1197.

[34] N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning for pro-
gram classification using bilateral tree-based convolutional neural
networks,” in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI), 2018,
pp. 1–4.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Proc. Adv. Neural Inf. Process. Syst., vol. 26,
2013.

[37] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. Program. Lang. (ACM),
vol. 3, pp. 1–29, Jan. 2019.

[38] Z. Cai, L. Lu, and S. Qiu, “An abstract syntax tree encoding
method for cross-project defect prediction,” IEEE Access, vol. 7,
pp. 170844–170853, 2019.

[39] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. JMLR, 2014, pp. 1188–1196.

[40] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” 2019, arXiv:1908.10084.

[41] R. Řehůřek and P. Sojka, “Software framework for topic modelling
with large corpora,” in Proc. LREC Workshop New Challenges NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50. [Online].
Available: http://is.muni.cz/publication/884893/en

[42] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 3734–3743.

[43] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from
the topological view,” in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34,
no. 4, pp. 3438–3445.

[44] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware charac-
terization and detection using deep learning,” Tsinghua Sci. Technol.,
vol. 21, no. 1, pp. 114–123, Feb. 2016.

[45] G. Canfora, F. Mercaldo, and C. A. Visaggio, “An HMM and structural
entropy based detector for Android malware: An empirical study,”
Comput. Secur., vol. 61, pp. 1–18, Aug. 2016.

[46] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-based malware
detection on Android,” IEEE Trans. Inf. Forensics Security, vol. 11,
no. 6, pp. 1252–1264, Jun. 2016.

[47] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso,
“Towards a fair comparison and realistic evaluation framework of
Android malware detectors based on static analysis and machine learn-
ing,” Comput. Secur., vol. 124, Jan. 2023, Art. no. 102996.

[48] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[49] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” 2021, arXiv:2105.14491.

[50] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[51] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order graph
neural networks,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 4602–4609.

[52] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[53] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–11.

[54] Y.-H. Chen, S.-C. Lin, S.-C. Huang, C.-L. Lei, and C.-Y. Huang,
“Guided malware sample analysis based on graph neural networks,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 4128–4143, 2023.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 06,2024 at 15:23:49 UTC from IEEE Xplore. Restrictions apply.

