
PFORTIFIER: Mitigating PHP Object Injection through
Automatic Patch Generation

Bo Pang*
School of Cyber Science and

Engineering, Sichuan University
hach.chp@gmail.com

Yiheng Zhang*
School of Cyber Science and

Engineering, Sichuan University
x1angf3ngwan@gmail.com

Mingzhe Gao
Alibaba Cloud Computing

mzgao@njnet.edu.cn

Junzhe Zhang
National University of

Singapore
junzhe.zhang@u.nus.edu

Ligeng Chen
Honor Device Co., Ltd

Nanjing University
chenlg@smail.nju.edu.cn

Mingxue Zhang†
The State Key Laboratory of Blockchain
and Data Security, Zhejiang University

mxzhang97@zju.edu.cn

Gang Liang†
School of Cyber Science and

Engineering, Sichuan University
lianggang@scu.edu.cn

Abstract—PHP Object Injection (POI) vulnerabilities enable
unexpected execution of class methods in PHP applications,
resulting in various attacks. In the meanwhile, designing ef-
fective patches for POI vulnerabilities demands substantial
engineering efforts. Existing research mostly focused on the
detection of POI gadget chains, whereas the automatic patch
generation remains an under-explored problem.

In this work, we empirically study known gadget chains,
and discover that adversaries usually construct gadget chains
by diverging the execution to paths that developers never
considered. The methods that get unexpectedly jump into (i.e.,
executed) are referred to as possible methods (PM). Based
on the observation, we propose PFORTIFIER, a framework
for automatic POI patch generation. PFORTIFIER operates
in two stages: (i) the gadget chain detection phase, in which
PFORTIFIER simulates the execution of PHP applications, and
detects gadget chains that pass attacker controlled objects
to dangerous sinks, and (ii) the patch generation phase, in
which PFORTIFIER automatically generates POI patches by
restricting PM jumps detected in the first phase. We evaluate
PFORTIFIER on 31 PHP applications and frameworks. The ex-
periment results demonstrate the effectiveness of PFORTIFIER:
it generates precise patches for 52.53% of gadget chains, and
suggests potential patches for 45.45% chains, resulting in a
total chain coverage of 97.98%.

1. Introduction

With a dominant market share of 77.4% among all
websites [1], PHP solidifies its position as the leading server-
side programming language for web services. Vulnerabilities

*. These authors contributed equally to this work.
†. Corresponding authors. Mingxue Zhang is also with Hangzhou High-

Tech Zone (Binjiang) Institute of Blockchain and Data Security, Hangzhou
310051, China.

in PHP-based applications thus become attractive to adver-
saries. One typical example is the PHP Object Injection
(POI) vulnerability, which allows attackers to execute class
methods in an unexpected way to developers, leading to
various types of attacks, e.g., SQL injection, Denial of
Service (DoS), etc [2]. The unexpected execution paths are
called gadget chains. In particular, according to the statistics
in PHPGGC [3], more than 75% of gadget chains lead to
remote code execution, compromising the reliability and
security of PHP applications. Hence, curbing the impact of
POI on PHP applications remains a pressing issue in need
of resolution.

One common method to mitigate vulnerabilities is patch
generation. There have been numerous studies [4]–[16] on
patching various vulnerabilities. However, these approaches
cannot be readily applied for patching POI vulnerabilities
due to the unpredictable nature of gadget chain execution
and the difficulty in designing effective sanitization. While
several works have focused on detecting gadget chains [17]–
[21], they lack a patch generation method specifically tai-
lored for PHP gadget chains.

Due to the complexity in exploiting POI vulnerabili-
ties, developers usually opt to manually design the patches,
which requires significant engineering efforts. Automatically
generating patches for the vulnerabilities, on the other hand,
tends to be a challenging problem. Specifically, in this work,
we face the following challenges in automatic POI patch
generation: C1: Infinite combinations. The unpredictable ex-
ecution of gadget chains may involve arbitrary combinations
of class methods. It is difficult to apply sanitizers on all pos-
sible execution paths. C2: Incomplete and inefficient chain
detection. Current gadget chain detection methods suffer
from inadequate coverage and analysis efficiency, restricting
the comprehensiveness and effectiveness of the patching
mechanism. Improving chain coverage and efficiency is also
difficult. C3: Impact minimization. We aim to patch POI
vulnerabilities while maintaining normal functionalities in

the patched applications, which is another challenge to be
addressed.

To address the above challenges, we propose a frame-
work, PFORTIFIER, for automatically generating gadget
chain patches. It is worth noting that without the internal
knowledge, it is very difficult to design one exact patch that
does not affect the intended functionalities for each vulnera-
bility. For instance, a method can be called unexpectedly by
an attacker through magic methods, yet it is also possible
that the magic methods are intended to be invoked. There-
fore, instead of suggesting exact patches for all vulnerability,
PFORTIFIER aims to provide developers with a minimal
number of potential patches while preserving the normal
code functionalities in the best effort manner. Although
PFORTIFIER does not always generate the exact patches,
automatic generation of minimal number of patches would
still significantly ease the auditing burden on developers.
Specifically, to address C1, we observe that adversaries use
PM jumps to divert code execution to unexpected paths.
Based on this, PFORTIFIER patches the gadget chains by
limiting PM jumps according to 8 pre-defined heuristic
rules. To address C2, PFORTIFIER performs a greedy sim-
ulation to abstract the code semantics and detect gadget
chains. Compared with prior works, such a design achieves
a higher chain coverage. PFORTIFIER further caches the PM
analysis results to speed up the analysis. Finally, to address
C3, PFORTIFIER constructs POI patches by adding only one
if branch to minimize its impact on the application’s normal
functionality.

We evaluated PFORTIFIER on 31 PHP applications and
frameworks. The results suggest that PFORTIFIER performs
well in both chain detection and patching. In terms of
gadget chain detection, PFORTIFIER outperforms the state-
of-the-art with 38.18% higher chain coverage, and detects
56 new chains1, while achieving a speedup of over 10X. For
patch generation, PFORTIFIER successfully patched 52.53%
of all detected chains, and generated patch suggestions for
the remaining 45.45% of chains, achieving a total chain
coverage of 97.98%.

Our primary contributions are summarized as follows:

• The first POI patch generation method. We pro-
posed a novel PHP gadget chain patch generation
method, and implemented a prototype framework,
PFORTIFIER. To the best of our knowledge, we are
the first to systematically study the POI patching
problem.

• Fast analysis with high chain coverage. We instru-
mented PFORTIFIER with an innovative coverage-
and-speed-oriented approach to detecting gadget
chains. Compared with existing detection tools,
PFORTIFIER improves the chain coverage by
38.18% with a speedup of over 10X.

• Comprehensive evaluation. Our thorough evalua-
tion on 31 applications demonstrate the effectiveness
of PFORTIFIER in generating POI patches.

1. 10 of them have been approved by PHPGGC by the time of writing.

• Availability. To benefit future studies, we have
released the implementation of PFORTIFIER on
GitHub2.

The rest of this paper is organized as follows. Section 2
describes the background about POI vulnerabilities, along
with the main challenges involved in patching POI. Section 3
presents an empirical analysis of known PHP gadget chains,
which inspires the design of PFORTIFIER in Section 4.
Section 5 demonstrates the implementation details. The
evaluation results on 31 PHP applications are presented in
Section 6. We then discuss the limitations and related works
in Section 7 and 8, respectively. Finally, Section 9 concludes
the paper.

2. Background

2.1. Magic Methods

One prerequisite for exploiting POI vulnerabilities is to
construct a chain of methods, i.e., the gadget chain, and
invoke its execution starting from one entry method. To
achieve this, one possible way is to leverage PHP magic
methods [22]. In this section, we first introduce PHP magic
methods.

PHP magic methods are special methods that are au-
tomatically triggered in specific scenarios. Classes imple-
menting various PHP magic methods can be used within
native PHP statements, allowing them to override the default
behavior of the object [22]. For instance, when printing
an instance of a user-defined class, the magic method
__toString() will be automatically invoked to convert
the object to a string. The same applies when an object
is being concatenated to a string or encoded as a JSON
object. This may lead to unpredictable runtime behaviors
or security issues, because such methods need not to be
explicitly invoked by developers and are capable to alter
object properties and program execution states. We list all
magic methods relevant to POI vulnerabilities in Table 7 in
the Appendix.

2.2. (De)serialization and Object Injection Vulner-
abilities

Serialization and deserialization are two fundamental
mechanisms in PHP that allow developers to convert objects
into a storable format, and vice versa. During serialization,
an object is converted into a string that can be stored in a
database or transmitted over the network. Deserialization,
on the other hand, refers to the process of reconstructing
objects from the serialized strings.

It is worth noting that the deserialization process is dy-
namic, i.e., strings for reconstructing objects are processed
at runtime, making it possible for attackers to manipulate
serialized data and control the deserialization results [23].
This allows attackers to inject arbitrary PHP objects, which

2. https://github.com/HACHp1/PFortifier

in turn trigger a sequence of class methods, forming a gadget
chain. Such vulnerabilities are referred to as PHP Object
Injection (POI) vulnerabilities [2].
1 <?php
2 class PendingBroadcast{
3 public function __destruct(){
4 $this->events->dispatch($this->event);
5 }
6 }
7

8 class Generator{
9 public function __call($method, $attributes){

10 return $this->format($method, $attributes);
11 }
12

13 public function format($format, $arguments = []){
14 return call_user_func_array(
15 $this->getFormatter($format), $arguments);
16 }
17

18 public function getFormatter($format){
19 return $this->formatters[$format];
20 }
21

22 public function __wakeup(){
23 $this->formatters = []; // official patch
24 }
25 }

Listing 1. Vulnerable classes and official patch in Laravel 8.6.12.

PendingBroadcast::
__destruct()

$this->events->
dispatch()

Generator::
__call()

$this->format()

Generator ::
__call()

call_user_func_array()

Generator::
getFormatter()
return $this->

formatters[$format]

call_user_func_array
(param1, param2)

patch

$this->formatters = []

Figure 1. Call stack and official patch of PHPGGC Laravel/RCE1.

Listing 1 presents the gadget classes in Laravel
8.6.12 [24] and the corresponding official patch. We collect
the example from PHPGGC [3], which is an open-source
library that provides a collection of known PHP gadget
chains, along with a payload generation tool. The gadget
chain in this example is identified as Laravel/RCE1
in PHPGGC. Figure 1 shows the associated call stack.
Exploiting the PHP Object Injection (POI) vulnerabil-
ity in Laravel/RCE1 grants attackers the control over
all fields in the root object this. Specifically, to con-
struct the gadget chain, the attacker manipulates the
events field of a PendingBroadcast object to a
Generator object. Then, since the Generator class
does not implement the dispatch method, an unex-
pected execution path is triggered to call the magic method
Generator::__call(). The chain ultimately reaches
the sink function call_user_func_array(), leading
to an arbitrary function execution vulnerability.

In the chain provided in Listing 1, the attacker
utilizes the formatters field of the Generator
class to obtain a controllable method name. This
method name is then passed as the first parameter to
the call_user_func_array() function within the
Generator::format() method, causing the vulnera-
bility. Given the crucial role of formatters field in this
gadget chain, Laravel developers patched the vulnerability

by overwriting this->formatters as an empty array
in the __wakeup() method. As a result, attackers can
not invoke arbitrary methods in Line 14. The example
demonstrates that for developers to patch gadget chains, they
must have a comprehensive understanding of its construc-
tion and execution, which requires significant engineering
efforts [21].

3. Insights

We systematically analyzed the known gadget chains in
PHPGGC. In this section, we use examples to demonstrate
our insights derived from the study. We further demonstrate
how our insights inspire the design of PFORTIFIER.

3.1. Possible Method Calls

Before delving into the design of PFORTIFIER, it is
imperative to understand how the gadget chains are con-
structed, and how the POI vulnerabilities can be exploited.
1 <?php
2 class LogPrinter{
3 public function __destruct(){ // entry method
4 echo $this->logger->getLog(); // PM call site
5 }
6 }
7

8 class Logger{
9 public function getLog(){ // expected method

10 return $this->log;
11 }
12 }
13

14 class SystemInfo{
15 public function __call(){ // unexpected method
16 $info = system($this->cmd); // sink method: cmd

injection vul
17 return $info;
18 }
19 }
20

21 $maliciousObject = unserialize($_COOKIE[’object’]); //
POI Vul

22 // $maliciousObject = O:10:"SystemInfo":1:{s:3:"cmd";s
:6:"whoami";

Listing 2. An example of POI vulnerability exploitation.

Listing 2 shows an example of POI vulnerability ex-
ploitation. Consider a situation where the developer is build-
ing an application that prints logs upon application exit. The
LogPrinter and Logger classes provide the function
for handling the log information. During the destruction of
LogPrinter, the getLog() method is invoked through
$this->logger for log printing. However, when the POI
vulnerability in Line 21 is exploited, $this->logger can
be unexpectedly set to a SystemInfo object, unbeknownst
to the developer. After that, the application attempts to
invoke getLog() through SystemInfo, which implicitly
invokes the magic method SystemInfo::__call() for
handling the undefined method call. As $this->cmd is
also manipulated by the attacker, the exploit eventually
triggers a perilous command injection vulnerability.

The underlying cause of the vulnerability lies in the
execution path that deviates from the flow intended by

Figure 2. The POI exploitation model.

the developer. This allows POI exploits to direct the code
to unforeseen class methods, triggering the execution of a
gadget chain. In the aforementioned example, the command
injection vulnerability is triggered by the initial call to
__destruct() in Line 4. In this work, we refer to the
triggering method like __destruct() as an entry method.
We further define class methods that may get triggered
through an attacker controllable object as Possible Methods
(PM) (i.e., getLog() and __call() in Line 9 and 15),
and the security-sensitive methods as sink methods (e.g.,
system() in line 16). As gadget chains are connected
through PM calls, the POI vulnerabilities can be effectively
patched by identifying and restricting the PM calls. In
particular, we designate the jumps triggered by the PM call
site as unsafe jumps.

It is worth noting that in this work, objects like
$this->attr in Listing 2 are considered “controllable”,
whereas $this is not. Although attackers may direct exe-
cution to a specific class and control $this, they can not
exploit the methods in any other classes through it.

3.2. Patching Strategy

As illustrated above, POI exploitation involves two key
stages: payload injection and gadget chain execution (Fig-
ure 2). In the payload injection stage, the attacker gains
control over a serialized string, allowing him/her to insert
a meticulously crafted object through the deserialization
method [23]. In the gadget chain execution stage, the at-
tackers invoke the entry method, steering the PHP appli-
cations toward security-sensitive sinks. Although the POI
vulnerabilities can be mitigated in either stage, we observe
that patching the second stage is more feasible and poses
minor impact on the normal functionalities. The reasons are
as follows.

❶ Varying ways for deserialization. In addition to ex-
plicitly calling unserialize(), there are also other pos-
sible ways to trigger deserialization for object injection. For
instance, the PHAR protocol in PHP supports autonomous
deserialization [25], which implicitly deserializes the meta-
data of files accessed via the PHAR protocol. Consequently,
it becomes difficult to restrict all deserialization operations
in the first exploit stage.

❷ Security awareness. Web developers prevalently use
deserialization for customized functionalities, e.g., reading
files and restoring cookies, etc. Due to the limited security
awareness of secondary developers, the custom code is more
likely to be vulnerable thus difficult to be effectively patched
by limiting object injections.

...Code Summary
Execute Simulation

Patch Generation

Call Graph
ConstructionSummarized

AST
Source
code Gadget chains

...

PM summaryLocal variables Sink functions

Manual Inspection

Static Analysis

Figure 3. The workflow of PFORTIFIER

❸ Patching efficiency. According to PHPGGC, a well-
acknowledged tool that provides a collection of 143 known
gadget chains, the vulnerable chains and classes mostly
reside in the PHP frameworks and libraries. Note that PH-
PGGC is not framework-exclusive, e.g., it also includes
chains in content management systems like WordPress.
Therefore, the distribution of vulnerabilities demonstrates
the prevalence of gadget chains in frameworks and libraries.
As a single framework or library may be adopted by multiple
secondary developers, patching POI by restricting gadget
chains enhances the security of PHP applications in a more
efficient way.

Impact on normal functionalities. Different from other
patch frameworks that aim to mitigate abnormal function-
alities [10], [12], patching POI vulnerabilities is more chal-
lenging, as it is difficult to distinguish exploits from normal
behaviors. Therefore, we do not aim to generate precise
patches that completely mitigate the security risks while
preserving all normal functionalities. This, if not impossible,
is very challenging due to the limited internal knowledge
of intended functionalities. Instead, we generate patches
for obviously abnormal behaviors, and provide patch sug-
gestions in other cases, so that developers can verify the
compatibility. In the meanwhile, we attempt to introduce
minimal changes to avoid affecting normal functionalities.

3.3. Summary

To summarize our observations, firstly, we find that in
POI exploits, the PM calls play a critical role in connecting
the gadget chains. Besides, although the POI vulnerabili-
ties can be patched by mitigating object injection risks or
restricting the execution of gadget chains, the latter is a
more feasible and efficient choice. Therefore, we decided
to patch the POI vulnerabilities by detecting gadget chains
and restricting the related PM calls. Finally, given the im-
practicality of devising precise and secure patches for all
vulnerabilities, we aim to generate as few simple patches as
possible, instead of always constructing one exact patch.

4. Design

4.1. Overview

In this section, we describe PFORTIFIER, a framework
for automatic generation of POI patches. The workflow of
PFORTIFIER is illustrated in Figure 3, which comprises three
analysis steps: code summarization, simulated execution,

and patch generation. The information collected during the
first two steps can be utilized to verify the automatically
generated patches. More detailed descriptions about the
three steps can be found below.

❶ Code Summarization: In this step, PFORTIFIER
parses the source code into abstract syntax trees (ASTs)
and extracts essential information from them, including the
fields, methods, class inheritances, interface inheritances,
interface implementations, and trait inheritances.

❷ Simulated Execution: In this step, PFORTIFIER sim-
ulates the execution of ASTs, enabling the identification of
potential gadget chains.

❸ Patch Generation: In this step, PFORTIFIER attempts
to patch the detected gadget chains by restricting the corre-
sponding unsafe jumps caused by PM calls. It iteratively
searches for the first patchable jump in the sequence of
method calls and adds related checks to prevent unsafe
jumps.

As our primary objective is to maximize the patching of
gadget chains, PFORTIFIER has been meticulously designed
to achieve high chain coverage while ensuring fast analysis
speed. In the following sections, we introduce the design of
PFORTIFIER in detail.

4.2. Code Summarization

PFORTIFIER initiates the code summarization process
by constructing and parsing ASTs, which serve as the foun-
dation for subsequent simulated execution. PFORTIFIER in
particular extracts all classes, traits, interfaces, and method
information to construct a map from the class name to the
ASTs of its methods. Additionally, PFORTIFIER constructs
another map from method names to the classes that imple-
ment the method, which we call attr func dict. As methods
of the same name can be implemented multiple times in
varying ways, PFORTIFIER maintains a list of methods in
the map to enable a conservative analysis.

The code summarization process assumes that source
code of all classes are available to attackers. We acknowl-
edge that such an assumption may lead to occasional report
of vulnerabilities that are very difficult to exploit in a
blackbox setting. However, this significantly improves the
coverage of gadget chains by analyzing all classes, traits,
and interfaces, and is thus suitable for the patch generation
purpose.

4.3. Simulated Execution

PFORTIFIER relies on a simulated execution to iden-
tify potential gadget chains. It starts the execution from
four most common entry methods, i.e., unserialize(),

destruct(), wakeup(), and toString(), following the
structure of their ASTs. The entry methods are extracted
from known gadget chains in PHPGGC. Nonetheless,
PFORTIFIER can also be easily extended to initiate the
simulation from other methods. Simultaneously, it marks
attacker-controllable objects as tainted, and propagates the
taint throughout the simulation process. Once such objects

flow into the sink functions or statements in Table 2, a
gadget chain is detected.

However, the simulation is not trivial. For instance, as
local variables may be controllable to an attacker, we need
a way to precisely track their values and point-to relation.
The branches caused by PM calls also need to be carefully
handled to avoid missing gadget chains. Additionally, we
aim to optimize the analysis to improve the efficiency. In
the following, we explain the simulation process in detail.

a) Local variable abstraction. One straightforward
way to handle local variables is to record their val-
ues, namespaces, and use statements under the cur-
rent scope. Since the main purpose of simulation is to
propagate the taint, for variables whose values cannot
be determined statically, PFORTIFIER can use a prede-
fined default value, e.g., an empty string for strings.
However, as also mentioned in Section 4.2, the sim-
ulation may encounter branches, e.g., when processing
a PM call site (e.g., $this->logger->getLog())
and multiple methods (e.g., Logger::getLog() and
SystemInfo::__call()) could be invoked. To fully
capture all possible execution effects, PFORTIFIER employs
forced execution of all branches, cloning and merging local
variables before and after the branch points. The details can
be found below.

Cloning local variables. Upon branches, PFORTIFIER
creates a copy of local variables for each branch, which
we call cloning. For cloning local variables, it is crucial
to preserve their original point-to relation, especially when
dealing with controllable objects. Nonetheless, deep copy of
the local variables may result in object duplication, which
in turn mixes up the point-to relation. Prior works [26]–
[28] maintain a pointer flow graph to address this issue,
which incurs additional overhead. Therefore, PFORTIFIER
records with each controllable object its index relative to the
root object instead. During a variable cloning, PFORTIFIER
locates the corresponding controllable object from the root
object through the index chain, and restores the structure
of the objects accordingly. For other variables, PFORTIFIER
simply records the values.

Merging local variables. After simulating the execution
of branches, PFORTIFIER chooses from all branches one
copy of local variables as the execution results, and con-
tinues the simulation. We call such process as merging.
For the merging of local variables, PFORTIFIER adopts a
greedy strategy, by prioritizing the branch that returns a
controllable object. This allows PFORTIFIER to further prop-
agate attacker-controlled objects and thus improve detection
coverage of gadget chains. If no such branch is available,
PFORTIFIER selects local variables from the first branch.

b) PM summarization. During the simulated execu-
tion, whenever a method has multiple implementations with
identical names, PFORTIFIER executes all of them for con-
servativeness. We adopt such a design, because this pro-
cess aims to achieve high chain coverage instead of being
precise. However, this also incurs high computational cost,
due to repetitive executions. To improve the analysis speed,
PFORTIFIER employs a map called PM summary to cache

the analysis results. The basic assumption is that if the
method names and controllabilities of parameters remain
consistent, the execution effects would also be the same.
PFORTIFIER specifically caches the merged local variables,
return values, and gadget chains involved, in all PM call
branches. Once PFORTIFIER completes the analysis of the
first PM call site, the execution results will be stored
in PM summary. Subsequently, when a method with the
same name and parameter controllability is encountered,
PFORTIFIER retrieves the results directly from the cache,
thereby expediting the simulation process.

c) Branch and loop optimization. As previously men-
tioned, PFORTIFIER forces the execution of all branches to
improve chain coverage. However, in case where a con-
trollable object is overwritten as non-controllable in one
feasible branch, this design choice could incur false pos-
itives. To improve the precision of simulation, PFORTIFIER
is equipped with a filtering module that identifies “safe”
objects that have been properly sanitized. The rationale is if
the controllable object is checked against strict conditions,
it is highly possible that developers are aware of the risk
that such objects might be controlled by attackers, and the
object can be deemed safe.

To this end, PFORTIFIER stores the indexes of sanitized
objects in a condition stack during the simulation of condi-
tional branches. For nested branches, each branch scope con-
stitutes a stack frame. We define the sanitized objects as the
receiver objects on which the checks in Table 1 have been
applied. The checks will be explained in detail in Section
4.4. Objects present in the condition stack are considered
sanitized and ignored by PFORTIFIER, as they cannot be
manipulated by an attacker. Once the conditional node (e.g.,
if statements) is processed, the corresponding condition is
popped out of the stack. Additionally, if the current scope
contains a die() statement, the corresponding indexes will
be promoted one level up in the stack. This ensures proper
handling of the statement’s impact on the surrounding scope.

To further improve the efficiency of loops, PFORTIFIER
performs analysis on each loop only once. Although this
could incur inaccuracies if the taint status of an object is
changed only in certain loops, we did not observe in practice
any such cases. In other words, the inaccuracies are very rare
if not inexistent.

d) Early termination. PFORTIFIER sets a thresh-
old max pop length of the call chain length, and
max pm length for the maximum number of PM calls. If
the number of method calls exceeds max pop length, or the
number of PM calls exceeds max pm length, PFORTIFIER
terminates the simulated execution as a tradeoff between
the analysis speed and comprehensiveness. In this work, we
empirically set the thresholds as 9 and 4, respectively. We
demonstrate in Section 6 that PFORTIFIER achieves a high
chain coverage with the early termination strategy.

4.4. Patch Generation

As discussed in Section 3, mitigating object injection is
very difficult, due to the heavy functional reliance on dese-

rialization in modern PHP applications. Instead, restricting
the execution of gadget chains would be more viable. Fol-
lowing this principle, we devised different patching strate-
gies for different categories of gadget chains, by restricting
the corresponding PM calls. PFORTIFIER detects PM calls
by checking all methods that can be invoked through an
attacker-controllable object, e.g., $this->attr in Listing
2. When a gadget chain reaching the sinks is identified, a
list of PM calls is extracted so that PFORTIFIER can select
a suitable one to patch.

Next, we demonstrate the definition and examples of
each category of gadget chains as follows.

❶ Magic method chains. PMs invoked in this category
of gadget chains are magic methods.

❷ Possible call chains. These gadget chains do not
involve magic method calls but contain other PM call sites.

❸ Vanilla chains. This type of gadget chains does not
contain any PM call site from the entry method to the sink.
1 <?php
2 class C1{
3 public function __destruct(){ //entry
4 $this->attr->vmethod();
5 }
6 }
7

8 class C2{
9 public function __call($methodname, $params){ //sink

10 echo $this->attr; //xss vulnerability
11 }
12 }

Listing 3. An example of a Magic Method chain.

1 <?php
2 class C1{
3 public function __destruct(){ //entry
4 $this->attr->vmethod();
5 }
6 }
7

8 class C2{
9 public function vmethod(){ //sink

10 echo $this->attr; //xss vulnerability
11 }
12 }

Listing 4. An example of a Possible Call chain.

1 <?php
2 class C1{
3 public function __destruct(){ //entry
4 $this->vmethod();
5 }
6 public function vmethod(){ //sink
7 echo $this->attr; //xss vulnerability
8 }
9 }

Listing 5. An example of a Vanilla chain.

Listing 3 shows an example of a magic method
chain. Specifically, upon execution of __destruct(),
if $this->attr is controllable and the class C2 does
not implement vmethod(), the magic method C2:: call()
will be invoked. Eventually, the XSS vulnerability in Line
10 will be triggered.

Listing 4 demonstrates an example of possible
call chain. Compared with in Listing 3, class C2
now implements the vmethod. Therefore, when

$this->attr->vmethod is called and $this->attr
is controllable, C2::vmethod will be invoked, triggering
the XSS vulnerability.

Listing 5 illustrates an example of a Vanilla chain. This
chain starts from C1::__destruct() and ends at Line
7. It is relatively shorter, as it does not involve any PM call
from one attacker-specified class to another.

We have thoroughly analyzed the features of each type
of gadget chains. In the following, we explain the patch
generation strategy in detail.

Patching magic method chains. These chains are con-
nected by magic method calls, which are only invoked
if the methods or attributes accessed is not available or
in an unexpected type. Therefore, PFORTIFIER can fea-
sibly restrict the method calls by checking the presence
and types of the corresponding methods or attributes. In-
spired by the existing pattern-based patch generation meth-
ods [10]–[12], PFORTIFIER applies the patching rules in
Table 1. For example, for a gadget chain that triggers
__call() by invoking an non-existent method, the patch
adds an if branch, checking whether the method has been
defined on the receiver object. If not, a die() state-
ment will be executed. We refer to such patches as “re-
strictive patches”. This simple patch is not only effec-
tive, but also incurs minimal changes. Furthermore, our
patches solely implement conditional checks at specific
magic method calls, inherently avoiding direct introduction
of new vulnerabilities. For the rest magic methods, e.g.,
__construct(), __wakeup(), __destruct(), and
__unserialize(), etc, it is infeasible to automatically
devise similar patches. For example, when __clone() is
invoked, it is difficult to determine whether the cloned object
is safe or desired. Therefore, PFORTIFIER searches for prior
method calls that can be feasibly patched, along the detected
gadget chains. If no such calls can be found, PFORTIFIER
instead generates patch suggestions for them, which will
be explained later.The patching strategy is summarized in
Algorithm 1.

Specifically, jmpNodes denotes the list of PM call
nodes in a gadget chain. To generate a patch, PFORTIFIER
iterates through each PM call node, and extracts information
such as the method call statement, the method name, and
the involved classes (Line 2-4). PFORTIFIER then generates
the corresponding patches (Line 5) for the PM call based
on the relevant rules. If there is no rule defined for the
node, PFORTIFIER attempts to generate the patch for the
next node. If a patch is successfully generated, the resulting
patch and its location will be returned.

Patching possible call chains and vanilla chains. If
the gadget chain is a possible call chain or vanilla chain,
PFORTIFIER may not be able to suggest an exact patch
that preserves all intended functionalities. This is because
such chains do not involve magic method calls that are
obviously unexpected, e.g., caused by undefined method
calls or incorrect attribute types. Therefore, in such cases,
PFORTIFIER generates patch suggestions instead of directly
creating patches. This also applies to several magic methods,
as described before. To design an effective approach to gen-

Algorithm 1: Rule-based patch generation via
found gadget chain

Input: jmpNodes
Output: the patch for the gadget chain

1 for jnode ∈ jmpNodes do
2 jmpStatement← getStatement(jnode);
3 method← getCurrentMethod(jnode);
4 class← getCurrentClass(jnode);
5 patch←

getPatchByRules(jmpStatement,method, class);

6 if patch != False then
7 break;
8 end
9 end

10 if patch != False then
11 finalPatch← patch;
12 else
13 finalPatch← None;
14 end

erating patch suggestions, we thoroughly studied the known
gadget chains and summarized the corresponding possible
patches. Specifically, for possible call chains, PFORTIFIER
suggests setting the controllable fields to NULL. As for the
vanilla chains, PFORTIFIER suggests limiting the deserial-
ization of the entry class.

Note that the patch suggestions are also automatically
generated, as PFORTIFIER can identify the controllable
fields, and the entry classes. The generated suggestions
ensure the vulnerabilities can be mitigated, yet the functional
compatibility needs to be confirmed. In Section 6, we further
demonstrate that PFORTIFIER can apply restrictive patches
to 48.5% detected gadget chains, and the rest chains are
shorter and easier to audit. Therefore, we believe the above
patching strategy can significantly reduce the manual efforts
required in mitigating POI vulnerabilities.

4.5. Minimal Working Example

Below, we use the code in Listing 2 as an example to
demonstrate the workflow of PFORTIFIER.

Firstly, in the code summarization phase, PFORTIFIER
extracts classes and the corresponding ASTs from the source
code, specifically, {“LogPrinter”: ASTs of destruct(),
“Logger”: ASTs of getLog(), “SystemInfo”: ASTs of

call()}. Based on that, the attr_func_dict map
is constructed as: {“ destruct”: [“LogPrinter”], “getLog”:
[“Logger”], “ call”: [“SystemInfo”]}.

Secondly, in the simulated execution phase,
PFORTIFIER initiates the execution from the entry
method LogPrinter::__destruct(). In this
context, all attributes of $this are controllable,
because the LogPrinter object is deserialized
from an attacker-controllable string. When ex-
ecuting $this->logger->getLog(), since
$this->logger is controllable, PFORTIFIER finds the
corresponding classes through attr func dict[“getLog”] and

TABLE 1. MAGIC METHOD CALL SITES AND CORRESPONDING PATCH GENERATION METHODS

Magic Method Call Site Magic Method Call Site Example Patch
call $this->attr->method() if(!method_exists($this->attr,’method’)){die();}
get $this->attr1->attr2 if(!property_exists($this->attr1,’attr2’)){die();}
set $this->attr1->attr2="something" if(!property_exists($this->attr1,’attr2’)){die();}

isset isset($this->attr1->attr2) if(!property_exists($this->attr1,’attr2’)){die();}
unset unset($this->attr1->attr2) if(!property_exists($this->attr1,’attr2’)){die();}

toString echo $this->attr if(!is_string($this->attr)){die();}
Iterator related methods foreach($this->attr as $key=>$value) if($this->attr instanceof Iterator){die();}

ArrayAccess related methods $this->attr["key"] if($this->attr instanceof ArrayAccess){die();}

attr func dict[“ call”], which will be class Logger and
SystemInfo. Then, $this->logger->getLog() is
recorded as a PM call node, and the PM call branches are
analyzed. For the SystemInfo:__call() branch, upon
analyzing up to Line 16, a command injection vulnerability
is detected, because the argument of system() is
controllable. Therefore, the chain is stored. However, no
vulnerability is found in the Logger::getLog() branch.
After analyzing the branches, the results are merged. Since
the Logger::getLog() branch returns a controllable
object, it is retained as the merged result according to the
greedy strategy. Upon returning to the echo() statement
in Line 4, an XSS vulnerability is detected, with the chain
also stored.

Lastly, PFORTIFIER generates patches for the
vulnerabilities.For the command injection chain, where
the PM call node is $this->logger->getLog(),
the first patch rule in Table 1 is matched, because
the sink function is invoked through magic method
__call(). Therefore, PFORTIFIER generates a
patch if(!method_exists($this->logger,
‘getLog’)){die();}. For the XSS chain, since no PM
is present in the call chain at Line 4, PFORTIFIER provides
a patch suggestion by adding public function
__wakeup(){die();} to the LogPrinter class. At this
point, developers can refer to the generated patch and
suggestion to repair the code accordingly.

5. Implementation

PFORTIFIER leverages PHPLY [29] to extract the AST
nodes from PHP source code and conducts a recursive simu-
lation execution on each type of node. We implemented the
simulator that tracks taint propagation in PHP applications
from scratch, in over 5K lines of code. We will open source
the implementation to benefit future research.

6. Evaluation

We have conducted a comprehensive evaluation of
PFORTIFIER, aiming to answer the following research ques-
tions:

RQ1: Gadget chain coverage. Can PFORTIFIER effec-
tively detect known gadget chains? Can PFORTIFIER detect
previously unknown chains? How does the result compare
with the state-of-the-art?

TABLE 2. SINKS OF PFORTIFIER

Vulnerability Type Sink Functions or Statements

PHPINFO called phpinfo

Arbitrary file reading show source, highlight file, file get contents,
readfile, fopen, file, fread

Arbitrary file deletion unlink

File sensitive operation
rmdir, mkdir, chmod, chown,
chgrp, touch, copy, rename,

link, symlink

Arbitrary code execution
array map, create function, call user func,

call user func array, assert, dl,
register tick function, register shutdown function

Preg replace arbitrary
code execution preg replace

Preg replace callback
arbitrary code execution preg replace callback

Command injection system, exec, passthru, shell exec, pcntl exec,
proc open, popen, escapeshellcmd

Mail() options injection mail

Arbitrary file write file put contents, fputs, fwrite

XXE simplexml load string, simplexml load file

SSRF get headers, curl exec, mysqli::query

SQL injection

mysql db query, mysqli query, pg execute, pg insert,
pg query, pg select, pg update, sqlite query,

msql query, mssql query, odbc exec, fbsql query,
sybase query, ibase query, dbx query,

ingres query, ifx query, oci parse, sqlsrv query,
maxdb query, db2 exec, sqlite exec, mysql query

XSS

print r, printf, vprintf, trigger error,
user error, odbc result all, ovrimos result all,

ifx htmltbl result,
ECHO, PRINT, EXIT

File uploading move uploaded file

Eval code execution eval

File inclusion include, include once, require, require once

RQ2: Precision of gadget chain detection. Does
PFORTIFIER report less false positives of gadget chains,
compared with the state-of-the-art?

RQ3: Efficiency of gadget chain detection. How effi-
cient is PFORTIFIER in detecting gadget chains? How does
the efficiency compare with the state-of-the-art?

RQ4: Performance for patch generation. What is
PFORTIFIER’s performance in patching gadget chains? Does
it generate faulty patches? How effective is it in providing
patch suggestions?

RQ5: Impact of gadget chain categories. Do all the
three categories of gadget chains prevalently exist? How
does that affect the patching effectiveness?

6.1. Experiment Setup

Baselines and dataset. In this study, we select FU-
GIO [21] and PHPGGC as the baseline. FUGIO is a state-
of-the-art tool for gadget chain detection and exploit gener-
ation. It firstly conducts a static analysis by tracking back
the data flow from sinks to attacker controlled deserializa-
tion sources. FUGIO then verifies the results and generates
exploits through a fuzzing process, in which it tries to
trigger the execution of detected gadget chains. PHPGGC
is a public library of known PHP gadget chains as previ-
ously introduced. This allows us to evaluate the superiority
of PFORTIFIER in gadget chain detection. As the first to
develop automatic POI patching frameworks, however, we
were not able to compare PFORTIFIER against other tools
in terms of patch generation capabilities.

As FUGIO does not disclose the specific gadget chains
detected from its dataset, in this work, we excluded the
applications evaluated in FUGIO that are not present in
PHPGGC, resulting in a dataset of 25 PHP applications.
To further evaluate the extensibility and scalability of
PFORTIFIER, we augmented the dataset with 6 other popular
applications. In total, we derive a dataset of 31 applica-
tions for our evaluation. Our dataset covers mainstream
frameworks (e.g., Zend Framework, CodeIgniter), popular
libraries (e.g., PHPExcel, Omnipay), and applications (e.g.,
Drupal, WordPress) with known PHPGGC chains, ensuring
the representativeness.

Deduplication of gadget chains. Currently, there is
no standard definition of gadget chains. FUGIO identifies
gadget chains as distinct execution chains, i.e., if a method
is executed once and twice respectively in two runs, they
will be counted as two distinct chains. However, such chains
usually exhibit the same semantics, and the presence of
long and complex chains will pose significant challenges for
manual auditing [21]. Therefore, we propose a specialized
chain identification method. Our approach is based on two
key observations: first, different entries branch into different
gadget chains, making the entry method a critical element
in the chain. Second, the effect of an attack is determined
by the sinks. Thus, we define the gadget chains as an entry-
sink pair. This helps minimize the number of chains to be
manually verified, and ensures that semantics of a gadget
chain can be preserved.

Time budget. In this work, we limited the maximum
execution time of FUGIO according to Equation 1. Basi-
cally, compared with PFORTIFIER, we allocate more time
budget to FUGIO, as the fuzzing verification process can
be time-consuming. The upper bound for FUGIO execu-
tion is set to 3 hours to manage the experiment cost on
31 applications. Although FUGIO might be able to cover
more chains when executed longer, our experiments have
proved that PFORTIFIER significantly outperforms FUGIO
in gadget chain detection with much less time budget.

tfugio =


100tPFORTIFIER, tPFORTIFIER ≤ 10s,

10tPFORTIFIER,
tPFORTIFIER > 10s and

tfugio ≤ 10800s,

10800s, tfugio > 10800s.

(1)

Experiment environment. The experiments were con-
ducted on a machine with an Intel Xeon Silver 4210 CPU
operating at 2.20 GHz and 64 GB RAM.

6.2. Experimental Evaluation

To ensure the accuracy and reliability of our results,
we manually verified the detected gadget chains and the
generated patches. In particular, for applications that under-
went patching, we meticulously inspected the the official
documentation of the patched sections to check whether the
functionalities remained unaffected.

6.2.1. Gadget chain coverage (RQ1). As FUGIO first
statically detects the gadget chains and then verifies them
dynamically, we compared FUGIO and PFORTIFIER in
terms of both the static and dynamic detection. The results
are listed in Table 3 and Table 4, respectively. Note that
the dynamic verification leads to lower chain coverage by
filtering the chains that cannot be executed during fuzzing.
Therefore, we believe the comparison fairly demonstrate the
superiority of PFORTIFIER.

Failure marks. 11 applications in our dataset cannot
be analyzed by FUGIO. For fairness, we excluded these
applications from the comparison. Specifically, three appli-
cations require a PHP version exceeding 7.2, which has not
been supported by FUGIO. We marked them as VersionOut.
During the static summary generation phase of FUGIO, the
analysis of seven other applications got stuck or encountered
queue delivery errors, and were marked as Unsupported.
Furthermore, Typo3 9.3.0 threw a memory exhausted error
when triggering the POI, which is marked as MemoryOut.

Static detection results. In Table 3, the “PHPGGC” col-
umn displays the number of known gadget chains in PH-
PGGC. The “Detected” columns represent the number of
PHPGGC chains detected by FUGIO and PFORTIFIER.
Additionally, the “New” columns indicate the number of
new gadget chains detected by FUGIO and PFORTIFIER.

As shown in Table 3, among the 20 applications without
failure marks, PFORTIFIER achieves a total gadget chain
coverage of 92.73% ((29+22)/(33+22)), outperforming FU-
GIO’s coverage of 54.55% ((21+9)/(33+22)). Compared to
the state-of-the-art, PFORTIFIER showcases a remarkable
38.18% higher total gadget chain coverage. PFORTIFIER
achieves higher coverage for two primary reasons. Firstly,
PFORTIFIER optimizes the speed of static analysis, en-
abling it to comprehensively analyze the entire applica-
tion within a restricted timeframe. Secondly, PFORTIFIER
adopts a simulation-based execution, which precisely tracks
the point-to relation and taint status across method calls.
In contrast, according to our case studies, FUGIO some-
times cannot precisely record controllable objects when long

TABLE 3. EVALUATION RESULTS OF PFORTIFIER AND FUGIO STATIC ANALYSIS FOR GADGET CHAIN DETECTION OF EACH APPLICATION. (WP:
WORDPRESS)

Applications
PHPGGC FUGIO PFORTIFIER

Chains Detected New Time Detected New Time Patch Patch Suggestion
Coverage Coverage

TCPDF 6.3.4 1 1 0 3m 20s 1 0 2m 29s 0 100%
Drupal7 2 1 0 2m 10s 1 0 13s 0 50%

Laminas 2.11.2 1 1 1 13m 20s 1 1 8s 50% 50%
SwiftMailer 5.4.12 2 2 2 10m 2 2 6s 0 100%
SwiftMailer 6.0.0 1 1 0 15m 1 1 9s 0 100%

Monolog 1.7.0 2 2 1 3m 20s 2 1 2s 0 100%
Monolog 1.18.0 1 1 1 5m 1 1 3s 0 100%
Monolog 2.0.0 1 1 2 5m 1 2 3s 0 100%

PHPExcel 1.8.1 (WP) 5 4 1 7m 50s 5 3 47s 75% 25%
Dompdf 0.8.0 (WP) 1 0 0 7m 20s 1 0 44s 100% 0

Guzzle (WP) 5 1 0 5m 40s 4 1 34s 50%
WooCommerce 2.6.0 (WP) 1 1 0 5m 6s 1 0 47s 100% 0
WooCommerce 3.4.0 (WP) 1 0 0 9m 30s 1 0 57s 100% 0

Emailsubscribers (WP) 1 1 0 5m 40s 1 0 34s 100% 0
EverestForms (WP) 1 1 0 5m 40s 1 0 34s 100% 0

Smarty 2 1 0 2m 20s 1 0 4s 0 50%
SwiftMailer 5.0.1 1 1 0 2m 10s 1 0 13s 0 100%

ZendFramework 1.12.20 4 1 0 2h 35m 3 5 15m 40s 44.44% 55.56%
Omnipay 0 0 0 13m 20s 0 1 8s 100% 0

ThinkPHP 6.1.0 0 0 1 8m 30s 0 4 51s 75% 25%
TYPO3 9.3.0 1 0 0 MemoryOut 1 2 1m 35s 33.33% 66.67%

Yii 1.1.20 1 0 0 Unsupported 1 4 2m 49s 60% 40%
CodeIgniter 4.1.3 1 0 0 VersionOut 1 3 3m 7s 100% 0

Swoft 2.0.11 0 0 0 Unsupported 0 4 43s 25% 75%
PHPCSFixer 2.17.3 2 0 0 Unsupported 2 2 35s 0 100%

Spiral 2.8 0 0 0 Unsupported 0 7 55s 71.43% 28.57%
Yii 2.0.37 2 0 0 Unsupported 1 3 3m 25s 80% 20%

PopPHP 4.7.0 0 0 0 VersionOut 0 2 3m 23s 50% 50%
CakePHP 3.9.6 2 0 0 Unsupported 0 4 2m 35s 100% 0

Slim 3.8.1 1 0 0 Unsupported 1 2 17s 100% 0
Slim 4.11.0 0 0 0 VersionOut 0 1 30s 100% 0

Total 43 21 9 36 56 52.53% 45.45%

and complex method call chains exist. For all 31 applica-
tions, PFORTIFIER achieves an impressive total coverage of
92.93% ((36+56)/(43+56)) for gadget chains. Additionally,
PFORTIFIER surpasses the state-of-the-art by detecting 13
more new chains from the 20 applications without failure
marks, and a total of 56 new chains from all applications.
This highlights PFORTIFIER’s effective chain detection ca-
pabilities. To facilitate future research, we released all new
chains on GitHub3.

Dynamic detection results. As presented in Table 4, FU-
GIO’s dynamic analysis achieves a total chain coverage
of only 27.27% compared to PFORTIFIER’s impressive
92.73%. The dynamic verification in FUGIO improves the
precision yet harms the coverage of gadget chains, causing
many chains undetected and cannot be patched.

6.2.2. Precision of gadget chain detection (RQ2). Table 5
presents the false positive rates for each tool. Specifically,
the false positive rate is calculated as nFP /nall, where nFP

represents the number of deduplicated false positive chains
or patches, and nall denotes the total number of deduplicated
detected chains or generated patches.

As shown in Table 5, among the 20 applications without
failure marks, PFORTIFIER achieves a total false positive

3. https://github.com/CyanM0un/PFortifier DataSet

TABLE 4. FUGIO DYNAMIC DETECTION COVERAGE AND PFORTIFIER
COVERAGE. (WP: WORDPRESS)

Applications FUGIO PFORTIFIER
Dynamic Coverage Coverage

TCPDF 6.3.4 1 / 1 1 / 1
Drupal7 1 / 2 1 / 2
Laminas 1 / 2 2 / 2

SwiftMailer 5.4.12 1 / 4 4 / 4
SwiftMailer 6.0.0 0 / 2 2 / 2

Monolog 1.7.0 0 / 3 3 / 3
Monolog 1.18.0 0 / 2 2 / 2
Monolog 2.0.0 0 / 3 3 / 3

PHPExcel 1.8.1 (WP) 5 / 8 8 / 8
Dompdf 0.8.0 (WP) 0 / 1 1 / 1

Guzzle (WP) 1 / 6 5 / 6
WooCommerce 2.6.0 (WP) 1 / 1 1 / 1
WooCommerce 3.4.0 (WP) 0 / 1 1 / 1

Emailsubscribers (WP) 1 / 1 1 / 1
EverestForms (WP) 1 / 1 1 / 1

Smarty 1 / 2 1 / 2
SwiftMailer 5.0.1 0 / 1 1 / 1

ZendFramework 1.12.20 1 / 9 8 / 9
Omnipay 0 / 1 1 / 1

ThinkPHP 6.1.0 0 / 4 4 / 4
Total 27.27% (15 / 55) 92.73% (51 / 55)

rate of 68.69%, while FUGIO’s false positive rate is 77.56%
in the static detection stage. Comparatively, PFORTIFIER
demonstrates an 8.87% lower false positive rate than the

TABLE 5. FALSE POSITIVE RATES OF PFORTIFIER, STATIC ANALYSIS OF FUGIO, AND PFORTIFIER PATCH GENERATION. (WP: WORDPRESS)

Applications False Positive Rate of False Positive Rate of False Positive Rate of False Positive Rate of
PFORTIFIER FUGIO Static Analysis PFORTIFIER Patch Generation PFORTIFIER Patch Suggestion

TCPDF 6.3.4 0 (0 / 5) 0 (0 / 2) No Patch Generated (0 / 0) 0 (0 / 1)
Drupal7 50% (1 / 2) 80% (4 / 5) No Patch Generated (0 / 0) 50% (1 / 2)

Laminas 2.11.2 40% (2 / 5) 0 (0 / 2) 0 (0 / 1) 0 (0 / 1)
SwiftMailer 5.4.12 54.55% (6 / 11) 64.71% (11 / 17) 0 (0 / 2) 0 (0 / 3)
SwiftMailer 6.0.0 55.56% (10 / 18) 68.42% (26 / 38) 0 (0 / 1) 14.29% (1 / 7)

Monolog 1.7.0 33.33% (3 / 9) 14.29% (1 / 7) No Patch Generated (0 / 0) 0 (0 / 3)
Monolog 1.18.0 42.86% (6 / 14) 42.86% (6 / 14) No Patch Generated (0 / 0) 0 (0 / 4)
Monolog 2.0.0 50% (7 / 14) 66.67% (10 / 15) No Patch Generated (0 / 0) 0 (0 / 5)

PHPExcel 1.8.1 (WP) 74.42% (32 / 43) 82.86% (29 / 35) 20% (2 / 10) 62.5% (5 / 8)
Dompdf 0.8.0 (WP) 90.91% (10 / 11) 100% (5 / 5) 50% (2 / 4) 100% (1 / 1)

Guzzle (WP) 58.33% (14 / 24) 75% (12 / 16) 68.75% (11 / 16) 50% (3 / 6)
WooCommerce 2.6.0 (WP) 75% (3 / 4) 0 (0 / 1) 50% (1 / 2) 100% (2 / 2)
WooCommerce 3.4.0 (WP) 77.78% (7 / 9) 100% (4 / 4) 55.56% (5 / 9) 33.33% (1 / 3)

Emailsubscribers (WP) 75% (3 / 4) 50% (1 / 2) 0 (0 / 2) 100% (2 / 2)
EverestForms (WP) 75% (3 / 4) 50% (1 / 2) 0 (0 / 2) 100% (2 / 2)

Smarty 83.33% (5 / 6) 66.67% (2 / 3) 0 (0 / 1) 66.67% (2 / 3)
SwiftMailer 5.0.1 69.70% (23 / 33) 75% (27 / 36) 0 (0 / 5) 0 (0 / 6)

ZendFramework 1.12.20 72.54% (177 / 244) 98.78% (81 / 82) 7.89% (3 / 38) 12.5% (1 / 8)
Omnipay 83.33% (5 / 6) 80% (12 / 15) 0 (0 / 1) No Suggestion (0 / 0)

ThinkPHP 6.1.0 79.31% (23 / 29) 92.86% (13 / 14) 7.69% (1 / 13) 0 (0 / 4)
TYPO3 9.3.0 50% (41 / 82) MemoryOut 21.05% (4 / 19) 40% (4 / 10)

Yii 1.1.20 76.19% (16 / 21) Unsupported 33.33% (2 / 6) 0 (0 / 2)
CodeIgniter 4.1.3 86.07% (105 / 122) VersionOut 20% (4 / 20) 33.33% (2 / 6)

Swoft 2.0.11 67.24% (39 / 58) Unsupported 0 (0 / 4) 0 (0 / 5)
PHPCSFixer 2.17.3 61.90% (13 / 21) Unsupported 100% (6 / 6) 0 (0 / 4)

Spiral 2.8 75.58% (65 / 86) Unsupported 8.33% (1 / 12) 16.67% (1 / 6)
Yii 2.0.37 55.84% (43 / 77) Unsupported 14.29% (2 / 14) 0 (0 / 5)

PopPHP 4.7.0 52.17% (12 / 23) VersionOut 50% (1 / 2) 0 (0 / 2)
CakePHP 3.9.6 74.83% (110 / 147) Unsupported 0 (0 / 5) 50% (1 / 2)

Slim 3.8.1 54% (27 / 50) Unsupported 14.29% (1 / 7) 0 (0 / 17)
Slim 4.11.0 35% (14 / 40) Unsupported 0 (0 / 6) 13.64% (3 / 22)

Total 68.69% (340 / 495) 77.56% (242 / 312) 21.60% (46 / 213) 19.08% (29 / 152)

state-of-the-art. As described before, this can be attributed
to the precise tracking of controllable objects in complex call
chains. Although FUGIO may avoid false positives in the
verification stage, this also leaves many chains undetected.
As the ultimate goal of PFORTIFIER is to be comprehensive
in patching the vulnerabilities, we think the false positive
rate is acceptable.

6.2.3. Efficiency of gadget chain detection (RQ3).
PFORTIFIER achieves notable performance in terms of gad-
get chain detection on the 31 applications. The longest
execution time recorded for PFORTIFIER is 15 minutes and
40 seconds, while the average execution time is 1 minute
and 27 seconds. In contrast, FUGIO reaches the maximum
execution time specified in Section 6.1 for most applications.
Overall , PFORTIFIER demonstrates remarkable efficiency
by outperforming FUGIO with an average speedup of more
than 10 times, clearly demonstrating the innovative advan-
tage of PFORTIFIER.

6.2.4. Performance for patch generation (RQ4). To un-
derstand how effective is PFORTIFIER in generating patches,
we analyzed the coverage and precision of patched gadget
chains. The results are described below.

Coverage. The last two columns in Table 3 present the
patch coverage and patch suggestion coverage. Specifically,
the patch coverage is calculated as P/GCall, where GCall

denotes the total number of all PHPGGC and newly detected

chains, and P represents the number of restrictively patched
chains. The patch suggestion coverage is S/GCall, where
S represents the number of chains for which PFORTIFIER
successfully generates patch suggestions.

PFORTIFIER successfully patched 52.53% of all gadget
chains and provided patch suggestions for the remaining
45.45% of chains, resulting in an impressive total chain
coverage of 97.98%. Importantly, rigorous manual checks
confirmed that all generated patches maintained the ap-
plications’ functionality intact. The high chain coverage
achieved in the patch and patch suggestion generation
strongly demonstrates the effective patch generation capa-
bilities of PFORTIFIER. It is important to note the total
number of patches and patch suggestions is less than the
number of chains. This is because multiple chains can be
patched by restricting one single PM call. For instance, in
ZendFramework 1.12.20, which comprises 472,015 lines of
code, PFORTIFIER identifies 244 chains and generates 46
patches and patch suggestions. Conducting a manual review
of the entire application and the chains would be a daunting
process. Nevertheless, PFORTIFIER enables developers to
validate the generated patches instead, substantially enhanc-
ing the efficiency.

Precision. The last two columns in Table 5 indicate the
false positive rates of the patches and patch suggestions gen-
erated by PFORTIFIER. Lower false positive rate for patches
is desirable for developers to confirm and apply the patches.

Out of the 213 restrictive patches, 46 are false positives,
resulting in a false positive rate of 21.60%. Similarly, for
patch suggestion generation, 29 out of 152 suggestions are
false positives, yielding a false positive rate of 19.08%.
The false positive are caused by inaccurate gadget chain
detection, leading to the patch of non-exploitable chains.
Nevertheless, the number of false positives is still low,
rendering manual checks affordable for developers.

6.2.5. Impact of gadget chain categories (RQ5). Table 6
provides an overview of the number and average length of
the three types of gadget chains. As shown, the number
of possible call chains and vanilla chains is smaller than
that of the magic method chains, and their average chain
lengths are also shorter. In essence, the construction of a
gadget chain resembles privilege escalation. As the chain
length increases, exploitation also becomes easier. Although
PFORTIFIER cannot generate restrictive patches for the pos-
sible call chains and vanilla chains, as such chains are also
less prevalent and easier to review, we believe our patching
strategy is effective for practical use.

6.3. Case Studies

We now present our case studies of several real-world
examples of restrictive patches and patch suggestions. Fur-
thermore, we demonstrate a case of an undetected chain
that was still successfully patched by PFORTIFIER, when
generating patches for other chains that involve the same
PM call. This illustrates the effectiveness and benefit of our
patching strategy.
1 <?php
2 namespace Spiral\Composer {
3 class Downloader {
4 public function __destruct() {
5 if ($this->dir === null) {
6 return;
7 }
8 if(!is_string($this->dir)){die();}
9 // patch generated by PFORTIFIER

10 $files = new \RecursiveIteratorIterator(
11 new \RecursiveDirectoryIterator(
12 $this->dir, \RecursiveDirectoryIterator::SKIP_DOTS)

,
13 \RecursiveIteratorIterator::CHILD_FIRST);
14 // trigger __toString
15 ...
16 }
17 }
18 }
19 namespace Spiral\Reactor {
20 class FileDeclaration {
21 public function __toString() {
22 return $this->render(0);
23 }
24 public function render(int $indentLevel = 0) {
25 $result = "<?php\n";
26 if (!$this->docComment->isEmpty()) {
27 // call PhpOption\LazyOption::isEmpty
28 $result .= $this->docComment->render($indentLevel) .

"\n";
29 }
30 ...
31 }
32 }
33 }
34 namespace PhpOption {
35 class LazyOption {

36 public function isEmpty() {
37 return $this->option()->isEmpty();
38 }
39 private function option() {
40 if (null === $this->option) {
41 $option = call_user_func_array(
42 $this->callback, $this->arguments); // sink
43 ...
44 }
45 }
46 }
47 }

Listing 6. A magic method chain in Spiral 2.8 and the patch generated by
PFORTIFIER

Spirl 2.8. Listing 6 demonstrates a magic method
chain detected in Spiral 2.8. The gadget chain starts
from Downloader::__destruct(). In Line 12, the
first parameter of the RecursiveDirectoryIterator
constructor is treated as a string, leading to the
call of FileDeclaration::__toString(). Subse-
quently, at Line 26, LazyOption::isEmpty() is in-
voked, eventually resulting in an arbitrary function call
in Line 41-42. To mitigate this vulnerability, PFORTIFIER
developed a patch for the chain at Line 8, which checks the
type of $this->dir and prevents it from proceeding to
the next node.
1 <?php
2 namespace Monolog\Handler {
3 class RollbarHandler {
4 public function __destruct() {
5 $this->close();
6 }
7 public function close() {
8 $this->flush();
9 }

10 public function flush() {
11 if ($this->hasRecords) {
12 $this->rollbarLogger->flush();
13 $this->hasRecords = false;
14 }
15 }
16 public function __wakeup(){$this->rollbarLogger = NULL

;}
17 // patch suggestion generated by PFORTIFIER
18 }
19 }
20 namespace PHPUnit\Runner{
21 class ResultCacheExtension {
22 public function flush() {
23 $this->cache->persist();
24 }
25 }
26 class DefaultTestResultCache {
27 public function persist() {
28 ...
29 file_put_contents($this->cacheFilename, json_encode(
30 [’version’ => self::VERSION, ’defects’ => $this->

defects,
31 ’times’ => $this->times,]), LOCK_EX); // sink
32 }
33 }
34 }

Listing 7. A possible call chain in Spiral 2.8 and the patch suggestion
generated by PFORTIFIER

Listing 7 illustrates a possible call chain
in Spiral 2.8. This chain originates from
RollbarHandler::__destruct(). In Line 12,
ResultCacheExtension::flush() is called, fol-
lowed by DefaultTestResultCache::persist()
in Line 23, resulting in an arbitrary file write in Lines

TABLE 6. THE NUMBER AND AVERAGE LENGTH OF DIFFERENT TYPES OF CHAINS

Type of Gadget Chain Magic Method Chain Possible Call Chain Vanilla Chain
Number of Gadget Chain 48 31 20

Average Chain Length 4.7 (224 / 48) 4.0 (125 / 31) 1.7 (34 / 20)

29-31. For gadget chains without magic method calls,
PFORTIFIER generates a patch suggestion at Line 16,
which overwrites the controllable object to NULL. In this
case, a manual review is required to further confirm the
patch suggestion. As mentioned in Section 6.2.5, checking
the suggestions does not require significant engineering
efforts.
1 <?php
2 namespace Symfony\Component\Process {
3 class Process {
4 public function __destruct() {
5 if(!method_exists($this->processPipes,’close’)){die()

;}
6 // patch generated by PFORTIFIER
7 $this->processPipes->close();
8 }
9 }

10 }
11 namespace Cake\ORM {
12 class Table {
13 public function __call($method, $args) {
14 ...
15 return $this->_behaviors->call($method, $args);
16 ...
17 }
18 }
19 }
20 namespace Cake\ORM {
21 class BehaviorRegistry {
22 public function call($method, array $args = []) {
23 ...
24 list($behavior, $callMethod) = $this->_methodMap[

$method];
25 return call_user_func_array([$this->_loaded[$behavior

],
26 $callMethod], $args); // springboard
27 }
28 }
29 }
30 namespace Cake\Shell {
31 class ServerShell {
32 public function main(){
33 $command = sprintf(’php -S %s:%d -t %s’,
34 $this->_host, $this->_port,
35 escapeshellarg($this->_documentRoot));
36 ...
37 system($command); //final sink
38 }
39 }
40 }

Listing 8. An exploitable gadget chain in CakePHP 3.9.6 and the patch
generated by PFORTIFIER

CakePHP 3.9.6. Listing 8 showcases a magic call chain
in CakePHP 3.9.6, and PFORTIFIER identifies an arbi-
trary method call in Line 25. However, as the first ar-
gument of call_user_func_array is an array, an
attacker can direct the execution to arbitrary method of
any class. Hence, PFORTIFIER cannot continue the sim-
ulated execution and failed to detect another chain that
ends at ServerShell::main() in Line 37. However,
PFORTIFIER can still generate a patch at the entry method
in Line 5, which restricts the next jump in the chain, i.e.,
Table::__call(). As a result, although the second

chain is not detected, PFORTIFIER still successfully patched
the vulnerability.

7. Discussion and Limitations

Our experiments have proved that PFORTIFIER exhibits
the ability to generate patches and patch suggestions for the
majority of gadget chains. In this section, we discuss several
limitations for future improvement.

First, PFORTIFIER effectively preserves the functionality
of applications that do not need to call magic methods in
gadget chains, a common scenario in real-world applica-
tions. However, the patching strategy may also brings side
effects in rare cases, e.g., when the developers intend to
call magic methods at entries to proceed the execution.
Nonetheless, our experiments have demonstrated that re-
stricting magic method calls did not break any functionality.
As also discussed in Section 4.4, using magic methods can
easily lead to gadget chains. Therefore, we believe it is not
a good coding practice and should be avoided.

Secondly, PFORTIFIER generates patch suggestions for
possible call chains and vanilla chains, instead of provid-
ing an exact patch. Different from the chains that invoke
magic methods in obviously unexpected scenarios, in these
chains, it is hard to automatically decide whether the patch
may break critical functionalities. Nonetheless, the gener-
ated suggestions can always mitigate the vulnerabilities.
PFORTIFIER just relies on the developers to confirm func-
tional compatibility, as they have sufficient internal knowl-
edge. We leave it as a future work to automatically verify
the patch suggestions.

Finally, PFORTIFIER may yield more false positives
compared with FUGIO, which verifies detected chains
through fuzzing. However, it is essential to note the dy-
namic verification in FUGIO also caused a lower recall,
leaving many chains unpatched. Instead, PFORTIFIER aims
to maximize the chain coverage to provide comprehensive
patches. Furture works may attempt to further reduce the
false positives, e.g., by applying symbolic execution for a
more precise execution simulation.

8. Related Work

Web application analysis methods. Given the critical
concern surrounding web vulnerabilities, extensive research
has been conducted on vulnerability detection [30]–[53]. For
instance, RIPS [31] facilitated PHP vulnerability detection
through static taint analysis of PHP tokens. TChecker [36]
improved the accuracy of static taint analysis for PHP
by modeling the types of objects and other dynamic fea-
tures. NAVEX [44] guided dynamic analysis using static

approaches, for automatic vulnerability verification and ex-
ploit generation. These tools are orthogonal to PFORTIFIER,
which aims to automatically patch the POI vulnerabilities.

Deserialization vulnerability detection methods.
Building upon the web application analysis methods, several
works have focused on deserialization vulnerability detec-
tion [17]–[21], [54]. Dahse et al. [17] proposed the first au-
tomated PHP gadget chain detection method by performing
a static analysis on the ASTs. FUGIO [21] introduced the
first automatic exploit generation method for gadget chains.
However, these methods primarily focus on gadget chain
detection and do not support automatic patch generation.
We also proved that PFORTIFIER outerforms state-of-the-art
tools in terms of gadget chain detection through a precise
simulated execution.

Automatic patch generation methods. Numerous ef-
forts [4]–[16] have been dedicated to automating vul-
nerability patch generation. Kim et al. [10] summarized
from human-written patches 10 templates for patching Java
vulnerabilities. Huang et al. [11] proposed a property-
based patching approach for automatic mitigation of buffer
overflow, bad cast, and integer overflow vulnerabilities.
AppSealer [12] mitigated component hijacking vulnerabil-
ities in Android apps by statically analyzing the bytecode
and blocking vulnerability sinks. In this work, we focused
on POI vulnerabilities, of which the exploits heavily rely on
property-oriented programming. This causes unpredictable
execution paths, and existing patching approaches cannot
be readily applied.

9. Conclusion

In this work, We introduce PFORTIFIER, the first au-
tomatic patch generation method for POI vulnerabilities.
PFORTIFIER leverages an efficient and high-coverage static
analysis module to detect gadget chains, and generates
patches by imposing restrictions on related PM calls. Our
comprehensive evaluation of PFORTIFIER demonstrates its
remarkable performance. PFORTIFIER significantly outper-
forms state-of-the-art gadget chain detection tools, achieving
higher chain coverage and analysis speed. It additionally
identifies 56 previously unknown gadget chains, of which
10 have been validated by PHPGGC. In terms of patch
generation, PFORTIFIER successfully generates patches for
all detected chains, resulting in a total coverage of 97.98%.

Acknowledgments

The authors would like to thank our shepherd and the
anonymous reviewers for their helpful suggestions. The
research described in this paper is sponsored by the National
Natural Science Foundation of China (No. 62402423) and
the National Natural Science Foundation of Sichuan under
Grant (No.2025ZNSFSC0509).

References

[1] W3Techs. (2023) Usage statistics of server-side programming
languages for websites. [Online]. Available: https://w3techs.com/
technologies/overview/programming language

[2] T. O. Group. (2023) Php object injection — owasp
foundation. [Online]. Available: https://owasp.org/www-community/
vulnerabilities/PHP Object Injection

[3] A. Security. (2023) PHPGGC: PHP generic gadget chains. [Online].
Available: https://github.com/ambionics/phpggc

[4] Y. Shi, Y. Zhang, T. Luo, X. Mao, Y. Cao, Z. Wang, Y. Zhao,
Z. Huang, and M. Yang, “Backporting security patches of web
applications: A prototype design and implementation on injection
vulnerability patches,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1993–2010.

[5] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu,
“Automatic hot patch generation for android kernels,” in Proceedings
of the 29th USENIX Conference on Security Symposium, 2020, pp.
2397–2414.

[6] Y. Chen, Y. Li, L. Lu, Y.-H. Lin, H. Vijayakumar, Z. Wang, and
X. Ou, “Instaguard: Instantly deployable hot-patches for vulnerable
system programs on android,” in 2018 Network and Distributed
System Security Symposium (NDSS’18), 2018.

[7] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching.” in USENIX Security Symposium, 2017,
pp. 1253–1270.

[8] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B. Saltafor-
maggio, and W. Lee, “Automating patching of vulnerable open-source
software versions in application binaries.” in NDSS, 2019.

[9] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes
for predicting patch correctness in program repair,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 981–992.

[10] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 802–
811.

[11] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties to
generate vulnerability patches,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 539–554.

[12] M. Zhang and H. Yin, “Appsealer: automatic generation of
vulnerability-specific patches for preventing component hijacking
attacks in android applications.” in NDSS, 2014.

[13] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp.
727–739.

[14] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 702–
713.

[15] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th international conference on software engineering, 2018,
pp. 1–11.

[16] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code
transformation learning for automated program repair,” in Proceed-
ings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 602–614.

[17] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in php: Au-
tomated pop chain generation,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
2014, pp. 42–53.

https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies/overview/programming_language
https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection
https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection
https://github.com/ambionics/phpggc

[18] M. Shcherbakov and M. Balliu, “Serialdetector: Principled and prac-
tical exploration of object injection vulnerabilities for the web,”
in Network and Distributed Systems Security (NDSS) Symposium
202121-24 February 2021, 2021.

[19] H. Shahriar and H. Haddad, “Object injection vulnerability discovery
based on latent semantic indexing,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, 2016, pp. 801–807.

[20] S. Rasheed and J. Dietrich, “A hybrid analysis to detect java se-
rialisation vulnerabilities,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020,
pp. 1209–1213.

[21] S. Park, D. Kim, S. Jana, and S. Son, “{FUGIO}: Automatic ex-
ploit generation for {PHP} object injection vulnerabilities,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 197–
214.

[22] T. P. Group. (2023) Php: Magic methods. [Online]. Available:
http://php.net/manual/language.oop5.magic.php

[23] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo,
B. Li, C. Ma et al., “Oddfuzz: Discovering java deserialization
vulnerabilities via structure-aware directed greybox fuzzing,” arXiv
preprint arXiv:2304.04233, 2023.

[24] T. L. Group. (2023) Laravel - The PHP Framework For Web
Artisans. [Online]. Available: https://laravel.com/

[25] S. Thomas. (2018) File Operation Induced
Unserialization via the “phar://” Stream Wrapper.
[Online]. Available: https://i.blackhat.com/us-18/Thu-August-9/
us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-\
Not-As-We-Know-It-wp.pdf

[26] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer analysis
more precise with still k-limiting,” in Static Analysis: 23rd Interna-
tional Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings. Springer, 2016, pp. 489–510.

[27] ——, “Efficient and precise points-to analysis: modeling the heap
by merging equivalent automata,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2017, pp. 278–291.

[28] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided
context sensitivity for pointer analysis,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

[29] S. Pitucha. (2018) PHP parser written in Python using PLY .
[Online]. Available: https://github.com/viraptor/phply

[30] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in Proceedings of the 13th international conference on
World Wide Web, 2004, pp. 40–52.

[31] J. Dahse and J. Schwenk, “Rips-a static source code analyser for
vulnerabilities in php scripts,” in Seminar Work (Seminer Çalismasi).
Horst Görtz Institute Ruhr-University Bochum. Citeseer, 2010.

[32] J. Dahse and T. Holz, “Simulation of built-in php features for precise
static code analysis.” in NDSS, vol. 14, 2014, pp. 23–26.

[33] ——, “Static detection of second-order vulnerabilities in web applica-
tions,” in 23rd {USENIX} Security Symposium ({USENIX} Security
14), 2014, pp. 989–1003.

[34] A. Algaith, P. Nunes, F. Jose, I. Gashi, and M. Vieira, “Finding
sql injection and cross site scripting vulnerabilities with diverse
static analysis tools,” in 2018 14th European dependable computing
conference (EDCC). IEEE, 2018, pp. 57–64.

[35] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Automatically
detecting php-based unrestricted file upload vulnerabilities,” in 2019
49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2019, pp. 581–592.

[36] C. Luo, P. Li, and W. Meng, “Tchecker: Precise static inter-procedural
analysis for detecting taint-style vulnerabilities in php applications,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, 2022, pp. 2175–2188.

[37] T. Jensen, H. Pedersen, M. C. Olesen, and R. R. Hansen, “Thaps:
automated vulnerability scanning of php applications,” in Secure
IT Systems: 17th Nordic Conference, NordSec 2012, Karlskrona,
Sweden, October 31–November 2, 2012. Proceedings 17. Springer,
2012, pp. 31–46.

[38] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the
state: A state-aware black-box web vulnerability scanner,” in Pre-
sented as part of the 21st {USENIX} Security Symposium ({USENIX}
Security 12), 2012, pp. 523–538.

[39] Y. Zheng and X. Zhang, “Path sensitive static analysis of web
applications for remote code execution vulnerability detection,” in
2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 652–661.

[40] I. Medeiros, N. Neves, and M. Correia, “Detecting and removing web
application vulnerabilities with static analysis and data mining,” IEEE
Transactions on Reliability, vol. 65, no. 1, pp. 54–69, 2015.

[41] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Chainsaw: Chained automated workflow-based exploit generation,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 641–652.

[42] I. Andrianto, M. I. Liem, and Y. D. W. Asnar, “Web application
fuzz testing,” in 2017 International Conference on Data and Software
Engineering (ICoDSE). IEEE, 2017, pp. 1–6.

[43] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, A. Razmjoo-
Qalaei, M.-R. Zamiri-Gourabi, and J. W. Davidson, “Malmax: Multi-
aspect execution for automated dynamic web server malware anal-
ysis,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 1849–1866.

[44] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“{NAVEX}: Precise and scalable exploit generation for dynamic web
applications,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 377–392.

[45] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site
scripting in the wild.” 2019.

[46] A. S. Buyukkayhan, C. Gemicioglu, T. Lauinger, A. Oprea,
W. Robertson, and E. Kirda, “What’s in an exploit? an empirical
analysis of reflected server xss exploitation techniques.” in RAID,
2020, pp. 107–120.

[47] T. Lee, S. Wi, S. Lee, and S. Son, “Fuse: Finding file upload bugs
via penetration testing.” in NDSS, 2020.

[48] J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai, “Ufuzzer: Lightweight
detection of php-based unrestricted file upload vulnerabilities via
static-fuzzing co-analysis,” in Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses, 2021,
pp. 78–90.

[49] P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs in
php,” in Proceedings of the Web Conference 2021, 2021, pp. 2721–
2732.

[50] P. Li, W. Meng, K. Lu, and C. Luo, “On the feasibility of automated
built-in function modeling for php symbolic execution,” in Proceed-
ings of the Web Conference 2021, 2021, pp. 58–69.

[51] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 1125–1142.

[52] S. Khodayari and G. Pellegrino, “Jaw: Studying client-side csrf
with hybrid property graphs and declarative traversals,” in USENIX
Security Symposium, 2021.

[53] J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web:
Automated discovery of cross-site information leaks in browsers and
the web,” in 2023 IEEE Symposium on Security and Privacy (SP),
2023.

http://php.net/manual/language.oop5.magic.php
https://laravel.com/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-\Not-As-We-Know-It-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-\Not-As-We-Know-It-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-\Not-As-We-Know-It-wp.pdf
https://github.com/viraptor/phply

[54] N. Koutroumpouchos, G. Lavdanis, E. Veroni, C. Ntantogian, and
C. Xenakis, “Objectmap: Detecting insecure object deserialization,”
in Proceedings of the 23rd Pan-Hellenic Conference on Informatics,
2019, pp. 67–72.

[55] T. P. Group. (2023) PHP: Iterator - Manual . [Online]. Available:
https://www.php.net/manual/en/class.iterator.php

[56] ——. (2023) PHP: arrayaccess - Manual . [Online]. Available:
https://www.php.net/manual/en/class.arrayaccess.php

Appendix A.
POP-related Magic Methods in PHP

We list in Table 7 the magic methods that could be
invoked in gadget chains.

TABLE 7. POP-RELATED MAGIC METHODS IN PHP

Magic Method Description

construct() Called when an object is instanced

destruct() Called when an object is destroyed, which is usually used as the entry of
the gadget chain

sleep() Called when an object is serialized

wakeup() Called when an object is unserialized, which is usually used
as the entry of the gadget chain or constructing a gadget chain patch

serialize() Called when an object is serialized

unserialize() Called when an object is unserialized, which is usually used
as the entry of the gadget chain or constructing a gadget chain patch

call() Called when the inaccessible method is invoked in an object
context

callStatic() Called when the inaccessible static method is invoked in a static context

invoke() Called when an object is called as a function

get() Called when values from non-existent properties are read

set() Called when writing values to non-existent properties

isset() Called when isset() or empty() is used on non-existent properties

unset() Called when unset() is used on non-existent properties

toString() Called when an object is treated like a string

set state() Called when var export() is used on an object

clone() Called when the cloning of an object is complete

debugInfo() Called when var dump() is used on an object

Iterator interface [55]
When conducting the foreach statement on an object, the

rewind(), valid(), current(), key(), and next() methods of the
object are called

ArrayAccess interface [56]
When an object is treated as an array, the offsetExists(), the
offsetUnset(), the offsetGet() and the offsetSet() methods are

called

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper tackles PHP Object Injection (POI) vul-
nerabilities by automatically generating patches for gadget
chains that might lead to exploitation of POI vulnerabilities.
Unlike existing tools that focus on detecting gadget chains,
PFORTIFIER goes further by simulating code execution
to identify vulnerable paths and automatically generating
patches based on heuristic rules.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This paper addresses the important and interesting
problem of mitigating PHP Object Injection vulner-
abilities.

2) This paper advances the state-of-the-art in PHP
Object Injection exploit chain identification, and
implements new gadget chains and publishes the
code.

3) Experimental results demonstrate high coverage of
gadget chains, higher rate of patching detected
chains, and efficiency of analysis, compared to the
SOTA.

https://www.php.net/manual/en/class.iterator.php
https://www.php.net/manual/en/class.arrayaccess.php

	Introduction
	Background
	Magic Methods
	(De)serialization and Object Injection Vulnerabilities

	Insights
	Possible Method Calls
	Patching Strategy
	Summary

	Design
	Overview
	Code Summarization
	Simulated Execution
	Patch Generation
	Minimal Working Example

	Implementation
	Evaluation
	Experiment Setup
	Experimental Evaluation
	Gadget chain coverage (RQ1)
	Precision of gadget chain detection (RQ2)
	Efficiency of gadget chain detection (RQ3)
	Performance for patch generation (RQ4)
	Impact of gadget chain categories (RQ5)

	Case Studies

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix A: POP-related Magic Methods in PHP
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

