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Abstract—Image retrieval is crucial for social media sites such

as Instagram to identify similar images and make recommen-

dations for users who share similar interests. To get rid of the

storage burden and computation for image retrieval, outsourcing

to a remote cloud is now a trend. Yet, privacy concerns mandate

the use of encryption before outsourcing the images. We need a

secure way for retrieving images from a not-fully-trusted server.

This paper proposes InstantCryptoGram, a secure image

retrieval service. We first design a new data structure called

sub-simhash, which fits for the inverted index used by many

searchable symmetric encryption schemes. It leads to our modu-

lar solution that supports efficient similarity queries and updates

over encrypted images. Our experiments on Amazon AWS EC2

over representative datasets show that our scheme is efficient and

accurate in finding similar images while preserving privacy.

I. INTRODUCTION

With the vast usage of mobile devices, an avalanche of
images is continuously generated every day. This phenomenon
gives birth to numerous photo-sharing sites such as Instagram
and Flickr. Various social networks (Facebook, Tumblr, etc.)
are also becoming photo-centric which allow users to upload
and share photos with friends/followers. Users are generally
interested in photos which share similar contents with what
they posted, like photos taken at the same place/event, or with
similar kinds of food/pets, as also shown by the popularity of
hashtags for annotating images. Two users who share similar
interests might like to reach out to each other. Image retrieval
is thus widely used to recommend similar images [1].

Albeit useful, image retrieval can be very time-consuming
for popular service providers who bear millions of images
uploaded every day. A popular trend now is to outsource
the image retrieval task to a commercial cloud server (e.g.,
Amazon EC2) to get rid of tremendous local storage and
computation burdens, which ultimately benefits the users.

While users might have accepted that their often-sensitive
images are revealed to the service providers for utilizing their
services, users are not willing to extend their trusts to the
storage server at the back-end, which is not much different
from a public cloud from the user perspective. The service
provider can encrypt the images before outsourcing. Yet, how
to enable efficient image retrieval over a large-scale encrypted
image collection remains a big challenge.

A. Related Work
The information retrieval community has devoted great

efforts to enable efficient image search (e.g., [2]), but privacy

is rarely taken into consideration. Huang et al. [3] developed
a biometric identification system over encrypted fingerprint,
yet its search complexity is linear in the database size. At
another extreme, the image retrieval scheme of Weng et al. [4]
simply uses deterministic hash functions which is efficient.
The price is that the privacy of the images solely relies on
the one-wayness of the hash functions and the omissions
of parts of the hashes. The authors argue empirically that
recovery is difficult. Yet, it is not a provable security guarantee.
Li et al. [5] made use of linear transformation methods
(e.g., matrix multiplications) to secure image features, which
suffer from high computation complexity (at least O(n2+) for
multiplying two n-dimensional matrices). Ferreira et al. [6]
proposed to deterministically encrypt the pixels and randomly
permute their positions [7]. One can thus compare the HSV
histograms of the encrypted images without a search trapdoor.

Cryptographers have proposed searchable symmetric en-
cryption (SSE) for supporting sub-linear search over encrypted
data. Later schemes are dynamic which support addition and
removal of files [8]. Recent research [9] shows that additional
features such as forward security can be generically obtained.
Nevertheless, the focus has been on exact searches over text
files. Structured encryption [7], [9], [10] extended SSE to
cover data structure in general, yet the concrete instantiations
just work with some basic structures such as matrix and graph.

Similarity encrypted search is generally done by using
less-efficient asymmetric primitive (e.g., pairing, which can
be outsourced in batch though [11]) to operate on each
possibility, thus does not scale for large image databases.
Zhang et al. [12] presented an image search system requiring
a trusted party which generates a lot of user-specific secret
keys for two servers. It works by first creating a cluster
representative for the images uploaded by each user, then
relying on homomorphic encryption to support the compu-
tation of Euclidean distances between an encrypted query
and the ciphertexts of every representatives from each user.
Notably, its correct functionality crucially relies on a special
kind of “key-transformation” of a homomorphic encryption
scheme1. Yet, the scheme was broken in 2014 [13], namely, a
decryption key can be recovered by O(1) arithmetic operations
with O(1) of plaintext-ciphertext pairs. This attack works

1It is suggested for “applications where semantic security is not required
and one-wayness security is sufficient.” See http://ia.cr/2012/193. Citation is
omitted for minimizing references to papers with/relying on insecure result(s).



even without accessing a transformation oracle (but never
formally analyzed, cf., related-key attacks), which nullifies the
performance demonstrated by their experiment [12]. That said,
one can resort to additive homomorphic encryption such as
Paillier [14] to compute the square of the Euclidean distance.
To minimize the leakage of the distances, Elmehdwi et al. [15]
proposed using additional protocols for securely computing
minimum and bit-decomposition to derive a list of nearest
neighbors. Wang et al. [16] designed an SSE for feature-
rich data (such as images) via the use of locality-sensitive
hashes (LSH). One of their schemes does not rely on (additive)
homomorphic encryption. However, their schemes suffer from
linear (in the dataset size) search complexity. Cui et al. [17]
also designed an LSH-based scheme. Yet, building index is
expensive, namely, the number of atomic operations, such as
encryption of the image features is linear in the product of
the number of files, the dimension of feature vector, and the
number of times LSH is applied (which is correlated with the
accuracy). Even the search time is sublinear in the number of
files, it is still inefficient due to the way the index is built.
Specifically, for each entry of the feature vector, it needs to
probe and retrieve a number of indices, depending on how
many LSH’es are used. Practically, it requires thousands of
atomic operations for a single retrieval query. (See Section V.)

B. Our Contributions
We design an image retrieval service that supports simi-

larity search and updates over encrypted data based on “sub-
simhash”, which “divide-and-conquer” [18] over simhash [19].
The novelty of our sub-simhash-based design is that it is
a general data structure fitting perfectly with any encrypted
(inverted) index structure [8], [9]. We can then leverage SSE
for pre-indexing before performing similarity search in a much
smaller scale. Note that we are not proposing a new SSE
scheme, nor a “fully-secure” solution which the users encrypt
their images under their own (public) keys before uploading.2

Our scheme also fits well with the prevalent model (e.g.,
[15], [20]) of two-servers. Expensive tasks including building
the searchable encrypted index, image retrieval, and image
update can be delegated to the cloud. Using SIFT [21] and
simhash, the service provider just needs to perform the basic
jobs of processing individual image, namely, receiving (and
subsequently encrypting) a user-uploaded image and returning
(and subsequently decrypting) relevant images for the users
with matching interests. Both are needed for any service
provider who needs to ensure the images confidentiality.

Finally, we performed experiments over representative real-
world datasets on Amazon AWS EC2. Our results demonstrate
the great efficiency improvements over an existing scheme for
mobile image sharing [17], without sacrificing accuracy.

II. PRELIMINARIES AND PROBLEM FORMULATION

We present technical preliminaries for the rest of our papers
and formulates our secure image retrieval problem.

2The latter probably requires some trust assumptions and managements of
the private keys, and heavyweight tools such as fully homomorphic encryption.
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Fig. 1: System architecture of InstantCryptoGram

A. SimHash

Simhash is a hashing technique which not only aims to
produce a unique signature of the input (like cryptographic
hash functions), but also ensures that “similar inputs” lead
to similar outputs (as binary strings) after applying simhash.
(We also call its output as simhash when there is no am-
biguity.) In other words, when applied on images, its main
characteristic is that similar images differ in a small number
of bit positions [19]. Specifically, for an f -dimensional feature
vector extracted from the image, it generates its corresponding
simhash by comparing each element value of the feature vector
with the averaged element value of the vector. The i-th entry
of the simhash is set as 1 if the i-th element value is larger
than the averaged element value; 0 otherwise.

B. Notations

Given a vector v, we refer to the i-th element as vi

and to its total number of elements as #v. Let the original
image set be g = {g1, g2, . . . , g#g} and the corresponding
extracted feature vector set be b = {b1, b2, . . . , b#g}, where
bi = (bi,1, bi,2, . . . , bi,f ) is an f -dimensional feature vector
of image gi by the widely used SIFT descriptors [21]. The
simhashes derived from the feature vectors are denoted by
B = {B1,B2, . . . ,B#g}. Each Bi is a bit-vector (while each
component of the feature bi,j is not a bit). An encrypted form
of message x is denoted by JxKpk , where pk is the encryption
key. Encrypted features are denoted by c = {c1, c2, . . . , c#g}

where ci is a ciphertext of bi, i.e., ci,j = Jbi,jKpk . Finally, we
use k to denote string concatenation and � to denote XOR.

C. System Model

Our system model consists of four main kinds of entities.
A mobile client U is a registered user who uploads images
and searches for relevant images from other clients. Here we
consider relevancy based on the features of the images.3 The
image gallery service provider IG (e.g., Instagram) provides
photo related services to U . The storage server SS is a cloud
server employed by IG which stores the encrypted images and
encrypted index for IG. It thus entertains requests for image
retrieval and updates from U . The crypto-service server CS is

3Suggestion based on contexts not related to the image features, say, people
visited St. Paul’s Cathedral, Mdina may also be interested in the love statue
in St. Julians, can be supported by techniques such as collaborative filtering.



another server employed by IG, which is responsible for key
management and providing cryptographic services.

Figure 1 illustrates a typical workflow. Without privacy, the
system only consists of U and IG. IG builds the search index
itself based on the images data uploaded from U , and probes
the index to find the similar images when U is making a query.
When considering privacy, the workflow involves all four
entities as follows. In the initialization phase, CS generates
and distributes the public/private keys to IG. Either U or IG
can encrypt the user-images which will be uploaded to SS .

Our system supports secure image retrieval via the following
workflow. SS cooperates with CS to build the encrypted
search index  . When U issues a query for similar images, it
first uploads the query image based on which IG generates
the search token ⌧q . SS then uses ⌧q to probe the search
index  . Finally, SS returns to IG (and U ) the identifier (ID)
set corresponding to the similar images. For adding or deleting
an image, CS sends an update (i.e., add or delete) token ⌧u

to SS , who will generate the updated index  0.

D. Discussion on the Two-Server Model / Trust Assumption
Our goal is to protect the confidentiality of the original

images and the corresponding features vectors from the storage
server SS

4. For practical efficiency, we leverage the non-
colluding assumption (e.g. [17], [20]). It requires that the two
servers (SS and CS in our case) are not colluding with each
other. Yet, they are curious to infer as much private information
as possible. We assume they dutifully execute the pre-defined
protocols. We also assume that IG can see the images in clear.
Note that most photo services post-processes images uploaded
by users. Without these assumptions, we probably need heavy-
weight tools such as public-key fully homomorphic encryption
plus insider-secure multi-key homomorphic signatures [22] or
delegation using indistinguishability obfuscation (e.g., [23]).

From the functionality perspective, our CS helps in comput-
ing simhashes over encrypted feature vectors and subsequently
adding them to the encrypted index. These computations
appear to be inherent for security. CS can be a fortified internal
host without high computational power and huge storage. In
particular, the storage and the searching are delegated to SS .

E. Cryptographic Details
1) Encrypted Image Retrieval: An encrypted image re-

trieval system consists of the following algorithms/protocols:
• K  Gen(1�): is a key generation algorithm run by CS ,

which takes as input a security parameter � and outputs
the key set K = {kd, ksse}, where kd and ksse are for
data encryption and SSE respectively.

• c  EncFeat(kd,b): is an algorithm run by IG. It uses
the key kd to encrypt the feature vectors b extracted from
the images, and outputs the ciphertexts c.

• {B;?}  SimhashComp(c; kd): SS and CS runs a
protocol5 with the ciphertexts c and the key kd as their

4As most SSE literatures, we do not consider private information retrieval
and assume SS can learn the image identifier (ID) in clear.

5(x; y) P (u; v) denotes that parties A and B run the protocol P with u
(or x) and v (or y) being A’s and B’s inputs (or outputs) correspondingly.

respective inputs. SS obtains simhashes B.
• S  SimhashDictBuild(B): Given the simhashes, SS

outputs the sub-simhash dictionary S = {S
v
}
div
v=1.

•   IndexBuild(S; ksse): Given the sub-simhash dictio-
nary S from SS and the key ksse stored by CS . CS

outputs the encrypted search index  to be stored by SS .
• (?; IDq)  Search(K, gq; ): is a protocol between IG

and SS . IG takes as input the key set K and the query
image gq , while SS takes as input the index  . It outputs
IDq , the ID set of similar images.

• (?; 0)  Update(K, gu; ): is an algorithm run be-
tween IG and SS . IG takes as input the key set K and
the update image gu, while SS takes as input the index  .
As a result, SS obtains an updated index  0.

2) Paillier Encryption: The Paillier encryption [14] is a
well-known public-key cryptosystem due to its additively
homomorphic property, namely, for any two messages x1 and
x2, Jx1Kpk ·Jx2Kpk = Jx1+x2Kpk and (Jx1Kpk )x2 = Jx1·x2Kpk .

3) Secure Computation Protocols: Secure two-party com-
putation protocols are well studied by cryptographers [24], [3],
[25], [26]. Below describes the interfaces of two such protocols
used by our scheme, with details deferred to the appendix.

Secure Comparison Protocol (SCMP): (x;?)
 SCMP((Ja1Kpk , Ja2Kpk ); sk) is run between SS and
CS , where SS holds two encrypted values Ja1Kpk and Ja2Kpk
under Paillier encryption, and CS has the corresponding
secret key sk . It outputs a bit indicating if a1 > a2. Looking
ahead, we use SCMP to compute the simhash of each image.

Secure Hamming Distance Protocol (SHAM): (x;?)  
SHAM((Ja1K, Ja2K); sk) is run between SS and CS . x is the
Hamming distance between two strings a1 and a2, i.e., the
number of positions at which the corresponding bits differ.

III. OUR SECURE MODULAR CONSTRUCTION

Locating relevant parts of the database without missing too
many results is the key idea of our system.

A. Overview
We transform the feature vector of an image into a simhash.

Similarity is defined by having Hamming distance from the
query smaller than a given threshold. To allow seamless
integration with any inverted-index-based SSE scheme, we
design a sub-simhash data structure. It divides each simhash
into several parts, where each is populated to different indices.

In more details, for each part, the images that share the same
sub-simhash are linked together as a linked list (which can be
replaced by other data structure [9]). Similarity searches are
done by probing different sub-simhashes of the query image.
In other words, image retrieval probes the inverted index for
possible matches, starting with the first sub-simhash of the
query image, and repeats the probing for its subsequent sub-
simhashes. This will cover a large portion of similar images.

B. Basic Design without Privacy Guarantee
The basic construction without privacy guarantees is run

between U and IG, which consists of four main phases.
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Fig. 2: Example of the basic construction

1) Computing Simhash: IG first extracts the feature vector
bi of each image gi exploiting the SIFT method, and then
computes the simhash Bi based on the feature vector. Finally,
it can obtain all the simhashes B = hBii

#g
i=1 of images hgii#g

i=1.
2) Building Sub-Simhash Dictionary: We exploit “divide-

and-conquer” [18] over simhash [19] to build sub-simhash.
IG divides each simhash into sub-simhash and builds the
dictionaries accordingly. Specifically, the f -bit simhash Bi is
divided into div parts, where each part in hBv

i i
div
v=1 is a d f

div e-
bit simhash named as sub-simhash. (If the last part is shorter
than d f

div e bits, IG can append a number of dummy bits.) div
is an important parameter which manifests itself in various
occasions. For the v-th part, IG builds the dictionary S

v that
stores (tag , value) pairs, where the tag is the v-th sub-simhash
selected from hBv

i i
#g
i=1, and value is a linked list Ltag which

stores the images sharing same sub-simhash in their v-th part.
3) Image Retrieval: IG probes div dictionaries one after

another for the linked list(s) whose tag is equal to the
corresponding sub-simhash hBv

qi
div
v=1 of the query image gq .

For each node of the matched linked list, IG figures out
whether it is similar to the query by comparing the Hamming
distance with the threshold z. It is crucial to set z smaller than
div to ensure that the query has at least one identical part with
the similar images. In other words, if the sub-simhash of the
query cannot be found, the Hamming distance between the
query and all the images must be larger than the threshold.

4) Dynamic Update: When U wants to add an image gu

with simhash Bu to the dataset stored on IG, IG first locates
among all the div sub-simhash dictionaries the linked list
whose tag is in hBv

ui
div
v=1, and then inserts Bu to the matched

linked list as a new head node. For deleting an existing image
gu, IG first locates the matched linked lists based hBv

ui
div
v=1,

and deletes the node corresponding to gu from them (with
appropriate housekeeping for linked lists).
Illustrative Example. Figure 2 illustrates how our basic
design works by a toy example for image set hgii6i=1. Here, we
assume that the simhash is divided into 4 parts (i.e., div = 4)
and the threshold is set to z = 3 (which is less than div ). For
brevity, the f -bit simhash is denoted by the concatenation of 4
capital letters, where different letters refer to different d f4 e-bit
sub-simhashes. Take the first part which marked in orange for
example, g1, g3, and g5 share the same sub-simhash A but they

may have a different second part. Therefore, A is set as the
tag and the corresponding value is the linked list that links
ABCA, ACAC, and ACBB together since they share the same
first part, as shown in Fig. 2 (a). Analogously, based on these
sub-simhashes, IG builds other (tag , value) pairs, which are
the components of the div = 4 simhash dictionaries hSv

i
4
k=1.

Fig. 2 (b) gives an illustration of querying an image with
simhash A0CB0B where A0 (B0) has 1 bit of difference from
A (B). IG first probes the dictionary S

1 for the first part
of the query with tag = A0. As S

1 contains no such tag ,
IG probes S

2 for the second part of the query. The matched
linked list tagged with C is LC . (It is the second row in S

2. For
brevity, the notation LC is omitted from S

2 in the figure.) Then
IG traverses each node LCj (j 2 (1, 2)) of LC to determine
whether the Hamming distance between the node and the
submitted query A0CB0B is smaller than z. It is clear that the
Hamming distance between A0CB0B and ACAC is larger than
the threshold 3, but that between A0CB0B and ACBB, which
is 2, is smaller than the threshold. Therefore, the corresponding
image whose simhash is ACBB is deemed as a similar image.

After the first dictionary with an identical sub-simhash is
identified, we can choose to traverse other dictionaries. This
possibly leads to either duplicate or additional search results.
For example, the fourth sub-simhash of the query, B, also
presents in dictionary S

4. If we traverse S
4, we will get

ACBB which already presents in the result from traversing S
2.

Traversing only one dictionary helps us to achieve high
efficiency, while traversing more can improve the accuracy.

Setting threshold z < div implies that an identical sub-
simhash must exist. Basing on identical sub-simhashes may
miss some similar results with differing bits scattered around
different parts of the simhash. Since simhash is based on aver-
age value of features, such cases are rare. Section V will show
by experiments that we achieve a favorable accuracy. This
echoes with the accuracy of privacy-preserving collaborative
filtering by applying “divide-and-conquer” over LSH [27].

Dynamic Updates. Adding and deleting an image are illus-
trated in Fig. 2 (c). Here we consider adding an image with
ABAC as its simhash and deleting an image corresponding to
ACAC. When adding ABAC, for the first part A, IG locates
the linked list LA in the dictionary S

1 and then inserts it as
the head of the linked list. Analogously, this simhash is also
inserted into the head of the matched linked lists in other
dictionaries (i.e., LB in S

2, LA in S
3, and LC in S

4).
When deleting ACAC, based on its sub-simhash, IG locates

the matched linked list in each dictionary. Then the node
ACAC is deleted, and its adjacency nodes are connected.

C. A Generic Construction for Image Retrieval with Privacy

In the following we show how to integrate the above basic
construction with an arbitrary inverted-index-based SSE.

1) Initialization: Gen(1�): Given a security parameter �,
CS generates the following keys uniformly at random: kd =
(pk , sk) for Paillier encryption and ksse for the SSE scheme.
The output is K = {kd, ksse} which is sent to IG securely.



EncFeat(kd,b): For each feature vector bi in b, IG con-
ducts Paillier encryption element-wise to obtain ci, where
ci,j = Jbi,jKpk . The encrypted features set c is sent to SS .

2) Building Index: SimhashComp(c; kd): SS , holding c =
hcii

#g
i=1, cooperatively computes the simhash of each image

with CS who holds the decryption key kd. To avoid computa-
tion of the average which involves division by f , SS instead
conducts element-wise multiplications to have hJf ·bi,jKpk ifj=1,
and homomorphically sums up the f elements to obtain
JbsiKpk = J⌃f

j=1bi,jKpk . Then, SS and CS jointly execute
the SCMP protocol (in Section II-E) to compare between
Jf · bi,jKpk and JbsiKpk . The output of SCMP determines the
j-th bit of simhash Bi. By repeating the above operations for
all i, SS obtains simhashes B = hBii

#g
i=1 of all the images6.

SimhashDictBuild(B): SS builds the sub-simhash dictio-
naries S from B as in Section III-B2 and then sends S to CS .
IndexBuild(S; ksse): CS uses the underlying SSE to build an

encrypted search index  of S = hSv
i
div
v=1 with key ksse. The

inverted index of “keyword-files” in the classical setting of
SSE exactly corresponds to our sub-simhash structure. To be
specific, each tag , which is a sub-simhash for different parts
of the image simhash, will be used as the “keyword”. The list
of files associated with a “keyword” will store all simhashes
sharing the same part of sub-simhash. Simply put, any SSE
can directly build the encrypted index  based on S.

3) Image Retrieval: For an image query gq from U , U

first uploads gq to IG. IG then cooperates with SS to run
Search(K, gq; ) to find the similar images:

For each sub-simhash of gq , IG generates the corresponding
search tokens from the underlying SSE. Note that it is easy
to differentiate between different parts by appending the part-
number (e.g., sub-simhash-“Part”-1). IG then submits the list
of tokens from the underlying SSE as a single token ⌧q to SS .

Using ⌧q , SS probes  to obtain candidate images with a
sub-simhash part identical with the corresponding part of gq .
SS can then determine if an image is similar by evaluating its
Hamming distance from gq and checking if it is smaller than z,
the given threshold7. Lastly, IDq = hidqi i

#IDq

i=1 is returned to U ,
where idqi is the identifier of the i-th similar image.

4) Dynamic Updates: When adding a new image or delet-
ing an existing image gu, U submits gu to IG. IG then
cooperates with SS to run Update(K, gu; ): IG uses K to
generate the update (i.e., add or delete) token ⌧u for image gu,
which will be used to update the index  to  0 on SS side.

D. Secure Image Retrieval Service: An Instantiation
Now we present an instantiation to illustrate how to seam-

lessly integrate our proposed structure with a linked-list-based,
provably secure dynamic SSE scheme [8]. It is easy to see
that the linked lists can be replaced by parallelism-friendly
dynamic encrypted data structure, e.g., cascaded triangles [9].
IndexBuild(S; ksse): We first randomly shuffle all the nodes

of each linked-list in the sub-simhash dictionaries and place

6One can make the output as a ciphertext for higher security against SS.
(See IV-A and [28].) But IG or CS then needs to build the encrypted index.

7Secure comparison protocol can be used to process an encrypted threshold.

Algorithm 1   IndexBuild(S; ksse)

Initialize hAv
s i

div
v=1, hTv

s i
div
v=1, hTv

di
div
v=1, ⇡, and ctr = 1;

for v = 1 to div do

for each tag ! 2 S
v

do

for j = 1 to #L! do

Set N!
j := id!j kJL!j Kpkk⇡(ctr + 1);

Set D!
j := FK1(id

!
j�1)k⇡(ctr � 1)k⇡(ctr)

k⇡(ctr + 1)kFK1(id
!
j+1);

Sample R!
j

$
 � {0, 1}�;

Set Av
s [⇡(ctr)] := (N!

j �H(PK3(!)kR
!
j ))kR

!
j ;

Set Tv
d [FK1(id

!
j )] := D!

j �GK2(id
!
j );

Set ctr := ctr + 1;
end for

Set Tv
s [FK1(!)] := (addrs(N!

1 )kFK1(id
!
1 )k

PK3(!))�GK2(!);
end for

end for

Return the encrypted index  := {As,Ts,Td};

them randomly in the search array As. We also store the head
address of each linked list in the search dictionary Ts for
locating all the nodes in the linked list. Besides, the neighbor
information of each node is stored in the update dictionary Td.

As specified in Alg. 1, CS first initializes the arrays and
dictionaries As = hAv

s i
div
v=1, Ts = hTv

s i
div
v=1, Td = hTv

di
div
v=1 of

size #g, and a counter ctr . We use a random function ⇡ which
maps an integer to a random address of the array maintained
by SS . We set ksse = {K1,K2,K3}, where K1,K2,K3 are
keys for pseudorandom functions F,G, P , respectively. Details
of parameter settings for these functions can be found in [8].

Based on each dictionary in hSv
i
div
v=1, SS computes N!

j for
the j-th node of the linked list L! that shares the tag !, where
id!j is the ID of the j-th image in L! , L!j is the f -bit simhash,
and ⇡(ctr + 1) is the address of the next node in array Av

s .
Meanwhile, D!

j consists of the neighbor information of each
node (i.e., the prior and following nodes of L!j and the
corresponding positions in search array Av

s ). Then SS encrypts
N!

j by H-based encryption [8] and stores it at address ⇡(ctr)
of Av

s , where H is a hash function. Besides, D!
j will be stored

in the update dictionary Tv
d in a ciphertext form. By increasing

ctr , SS can get the (j + 1)-th node of the linked list L! and
encrypt the information of this node by the above operations.
For each linked list L! , the address of the head node N!

1 in Av
s

will be further encrypted and stored in the search dictionary
Tv
s . Finally, we obtain the encrypted index  = (As,Ts,Td),

which will be sent to SS

Search(K, gq; ): As shown in Alg. 2, IG first computes
the simhash Bq for the query image gq and divides Bq into
div parts. For the sub-simhashes hBv

qi
div
v=1, IG generates the

corresponding search tokens h⌧vq idivv=1 and submits them to SS .
SS parses the search token ⌧vq as (⌧v1 , ⌧v2 , ⌧v3 ) and returns ?

if ⌧v1 is not present in Tv
s . Otherwise, SS recovers the address

addr1 of the head of the matched linked list and looks up
Av
s [addr1] to obtain Nq

1, which corresponds to the first node of



Algorithm 2 (?; IDq) Search((K, gq); )

IG: Compute the simhash Bq of image gq;
IG: Compute the search token:
⌧
v
q := h(FK1(B

v
q), GK2(B

v
q), JBqKpk )idivv=1;

At SS side:
Initialize set IDq := ;;
for v = 1 to div do

Parse ⌧vq as (⌧v1 , ⌧v2 , ⌧v3 );
if Tv

s [⌧
v
1 ] = ? then Continue;

else

Parse Tv
s [⌧

v
1 ]� ⌧

v
2 as addr1kFK1(id

q
1)kPK3(B

v
q);

Look up Av
s [addr1] = (NHq

1kR
q
1);

Compute Nq
1 := NHq

1 �H(PK3(B
v
q)kR

q
1);

Set counter j := 1;
while addr j 6= null do

Parse Nq
j as idqjkJL

q
jKpkkaddr j+1;

SS&CS: (x,?)  SHAM(JLqjKpk , JBqKpk ; sk );
if x  z then Add idqj to set IDq; end if

Look up Ai
s[addr j+1] = (NHq

j+1kR
q
j+1);

Compute Nq
j+1 := NHq

j+1�H(PK3(B
v
q)kR

q
j+1);

Set j := j + 1;
end while

end if

Return set IDq of similar images to IG;
end for

the matched linked list. Then SS retrieves the matched linked
list to find similar images until addr j = null. Specifically,
for Nq

j that contains the j-th node’s encrypted simhash JLqjKpk
of the matched linked list, SS and CS jointly compute the
Hamming distance between Lqj and Bq using SHAM protocol
(in Section II-E). When the Hamming distance is smaller than
the threshold z, the ID idqj of the matched image is added to
the set IDq . Then the (j + 1)-th node’s information can be
extracted via addr j+1. After detecting all the nodes of the
matched linked lists, SS can create the set IDq with the ID of
all the similar images. Finally, IDq will be returned to IG.
Update(K, gu; ): As shown in Alg. 3, IG first computes

the simhashes hBv
ui

div
v=1 and the update tokens h⌧vuidivv=1.

Adding an image: The update token ⌧vu can be parsed into
six parts. SS first chooses a free position from the array Av

s

that will be used to store the update image’s information. If ⌧v1
is not present in Tv

s , this update node will be set as the only
node of a new linked list. Otherwise, SS adds the new node to
the head of the matched linked list and updates the neighbor
information. To be specific, SS stores the information of the
update node in Av

s , updates Tv
s to save the address of the new

head node, and updates the neighbor information of Tv
d .

Deleting an image: For simplicity, we assume SS first
searches for the identifier of the image gu to be deleted.
SS parses the search tokens ⌧u as (⌧1, ⌧2) and returns ?
if ⌧1 is not present in Tv

d . Otherwise, SS looks up Tv
d and

recovers the adjacency information, where s1 and s2 contain
the “encrypted” ID of the neighbor nodes, and a1 and a3 are

Algorithm 3 (?; 0) Update((K, gu); )

IG: Compute the simhash Bu of image gu;
1) Adding a new image:

IG: Compute the add token ⌧u := h⌧vui
div
v=1 where ⌧vu :=

(FK1(B
v
u), GK2(B

v
u), PK3(B

v
q), FK1(idu), GK2(idu),N

v
u),

and Nv
u := (idukJBuKpkknull)�H(PK3(B

v
q)kR

v
u)kR

v
u;

At SS side:
for v = 1 to div do

Parse ⌧vu as (⌧v1 , ⌧v2 , ⌧v3 , ⌧v4 , ⌧v5 , ⌧v6 );
Choose a free node with address addr1;
if Tv

s [⌧
v
1 ] = ? then

Set Av
s [addr1] := ⌧

v
6 ;

Set Tv
s [⌧

v
1 ] := (addr1k⌧4k⌧3)� ⌧2;

Set Tv
d [⌧3] := (0k0kaddr1k0k0)� ⌧5;

else

Parse Tv
s [⌧

v
1 ]� ⌧

v
2 as (addr2kFK1(id

u
1 )k⌧3);

Parse ⌧6 as (NHv
ukR

v
u);

Set Av
s [addr1] := (NHv

u � (0kaddr2))kRv
u;

Update head node Tv
s [⌧

v
1 ] := (addr1k⌧4k⌧3)� ⌧2;

Set Tv
d [⌧4] := (0k0kaddr1kaddr2kFK1(id

u
1 ))� ⌧5;

Set Tv
d [FK1(id

u
1 )] := Tv

d [FK1(id
u
1 )]�(⌧4kaddr1k0);

end if

end for

2) Deleting an existing image:

IG: Compute the delete token ⌧u := (FK1(idu), GK2(idu));
At SS side:
Parse ⌧u as (⌧1, ⌧2) and return ? if ⌧1 is not in Td;
for v = 1 to div do

Parse Tv
d [⌧1]� ⌧2 as (s1ka1ka2ka3ks2);

Parse Av
s [a1] as NHv

ukR
v
u;

Update Av
s [a1] := NHv

u � (0ka2)� (0ka3)kRv
u;

Tv
d [s1] := Tv

d [s1]� (0ka2k⌧1)� (0ka3ks2);
Tv
d [s2] := Tv

d [s2]� (⌧1ka2k0)� (s1ka1k0);
end for

SS: Obtain an updated index  0 := {As,Ts,Td};

the addresses of the neighbor nodes. SS then links the pointer
of the previous node to the next node in Av

s and updates the
related entries of the neighbor nodes in Tv

d .

IV. THEORETICAL ANALYSIS

A. Security

Security of our system is easy to be argued thanks to
its modular design from any SSE scheme and any secure
protocols (for SCMP and SHAM functionalities) which in turn
rely on any additive homomorphic encryption scheme (Paillier
in our case). Our system inherits any leakage incurred by the
underlying SSE scheme, such as the neighbor nodes during
update in our instantiation [8]. When instantiated with another
SSE scheme, e.g., [9], the leakage would be different.

On the SS side, it only receives ciphertexts at the beginning.
In the image retrieval (resp. dynamic update) phase, SS

obtains the search (resp. update) tokens which encrypts the
query image in the form of Paillier ciphertext as well. In



SCMP (ms/KB) SHAM (ms/KB)

Phase Time Bandwidth Time Bandwidth
Offline 131.23 22.34 227.50 23.07
Online 4.48 9.64 27.00 20.58

TABLE I: Reference costs of SCHP & SHAM

addition, while the Hamming distance (the output of the
SHAM subroutine) and the threshold is revealed to SS , the
dataset and the query image are encrypted, so SS still cannot
build any meaningful relation of the dataset to recover the
original images and the corresponding features.

On the CS side, the secure two-party computation protocols
(for SCMP and SHAM) guarantee that CS can learn nothing
about both the input and the output of SS . With the non-
colluding assumption, SS and IG (obviously) will not actively
reveal the ciphertexts to the CS . Only the simhash output by
SimhashComp is revealed to SS , which is far from the feature
vector [29]. For higher security, existing transformation can
turn the output of SCMP into a ciphertext [28].

B. Efficiency

For the computation overhead, encrypting data and con-
structing SSE-based index are one-time processes, we thus
focuses on image search and update phases. For searching,
the traversal done by SS depends on the length of the linked
lists. For databases with a lot of supposedly different images,
the images will be distributed across 2d

f
div e different linked

lists, which is the number of possibilities for a sub-simhash.
Even if we probe multiple dictionaries for an even higher
accuracy, the average search complexity is O((↵/2↵) · #g)
where ↵ = d f

div e. To add an image, SS retrieves the pointer
to the head of the corresponding linked list, which takes O(1)
time. To delete an image, after the node is searched, SS can
easily find the address of the node corresponding to update
image and update the encrypted index. The latter step is O(1).

For the storage overhead, the index in the basic scheme
mainly consists of the sub-simhash dictionaries, which need
O(div ·#g) space. In the secure scheme, the index contains
As, Ts, and Td, where the storage complexity is O(div ·(#g)2)
for the array As, and O(div ·#g) for Ts and Td.

V. EXPERIMENT EVALUATION

Motivated by outsourcing, we deployed SS and CS on
Amazon AWS EC2 instances “c4.8xlarge” (same as [17]) with
a 36-core Intel Xeon CPU at 2.90GHz and 60GB RAM for our
experiments. SS and CS run Java runtime environment (JRE)
1.8 on Windows Server 2012R2. IG and U run on Windows 10
desktop, with a 4-core Intel CPU at 2.90GHz and 12GB RAM.

Our experiments used five well-known real datasets8 which
are also used in the artificial intelligence community (e.g., for
large-scale image retrieval [30]), namely, Holidays: 1491
personal holiday photos underwent various transformations,

8Last retrieved in 2018 from http://lear.inrialpes.fr/people/jegou/data.php,
http://www.robots.ox.ac.uk/⇠vgg/data/oxbuildings, https://archive.org/details/
ukbench, https://authors.library.caltech.edu/7694, http://press.liacs.nl/mirflickr

Fig. 3: Index-building time Fig. 4: Index storage costs

Fig. 5: Image retrieval time Fig. 6: Image update time

Oxford5K: 5062 images of 11 landmarks, each is represented
by 5 queries, Ukbench: 10200 images of 2550 different
scenes/objects, Caltech-256: 30608 images from 256 cate-
gories, and MIR Flickr 1M: 1 million images from Flickr.

A. Details on Building Blocks

Our experiment used Paillier with a 1024-bit modulus. The
bit length of each random mask is set to be 32. Follow-
ing [3], we used 80-bit wire labels for garbled circuits. Table I
presents the time and bandwidth costs for subroutines SCMP
and SHAM detailed in Appendix. Several important remarks
are in order. First, we utilize conceptually simple protocols
which one party (CS) decrypts a randomized ciphertext, while
the two parties (CS and SS) execute a garbled circuit on
randomized inputs. The time costs for CS and SS are roughly
the same and we do not differentiate them. Second, the offline
phase, which prepares the garbled circuits and the associated
oblivious transfer (OT) protocol, can be executed before seeing
any data. Lastly, it is easy to adopt any SCMP [28] and SHAM
protocols [3], [25], [26] or use optimized OT protocols.

B. Efficiency

We implement our secure scheme in Section III-D to pre-
cisely evaluate its efficiency. Firstly, for sub-simhash structure,
we demonstrate how div , the number of the parts in each
simhash, affects the performance. Figures 3 and 4 present the
costs for computation of building index over different datasets
and for storing the encrypted index of the Holidays dataset,
with div varied from 3 to 7. We can see that the computation
overhead grows linearly with the dataset size, but is faintly
affected by div . Index storage grows linearly with div .

Figures 5 and 6 demonstrate the impact of div on the time
costs of image retrieval and update. From Fig. 5, we can see
that the image retrieval on each dataset is nearly unaffected by
div , and SS only needs about 0.41s for searching an image on



(a) Building index phase (b) Image retrieval phase (c) Image adding phase (d) Image deleting phase

Fig. 7: Time costs comparison between InstantCryptoGram and Cui et al.’s scheme

Fig. 8: Precision and recall (vs. threshold) over two datasets

the MIR Flickr 1M dataset with 1 million records. Fig. 6
shows that the image update time is independent of div . When
adding a new image, IG takes about 0.040s to generate the
tokens, while SS takes 0.072s to update the index. To delete
an image, the time costs on both IG and SS are less than 1s.

Figure 7 shows in log-scale the overall time costs for each
phase compared with Cui et al.’s SSE-based image retrieval
scheme [17], which is claimed as the state-of-the-art for
mobile devices. Here div is set to be 15. (We will show that it
leads to a favorable accuracy for the datasets we used). From
Fig. 7a, the time cost of Cui et al.’s scheme is four times of
ours in the index-building phase over all datasets. For image
retrieval, addition, and deletion, Fig. 7b, 7c, and 7d show that
ours also enjoys several order-of-magnitude improvements.

C. Accuracy
For accuracy, we evaluate precision, the fraction of retrieved

images that are relevant to the query, and recall, the fraction
of the relevant images that are successfully retrieved. Figure 8
shows the precision-recall curves with different thresholds z

over Holidays and Ukbench datasets, with each simhash
being 128-bit. With the growth of the threshold z, the precision
decreases and the recall increases. We thus choose the thresh-
old as the one corresponding to the intersection of the precision
and recall curves which give us a precision of 0.75 and a recall
of 0.83 respectively for Holidays and Ukbench.

We also conduct query experiments on the Holidays
dataset for our motivating OSN application, where each image
is resized to 640 ⇥ 480 and transformed into a 128-bit of
simhash, with the threshold set to 14. As a highlight illustrated
in Fig. 9, when querying a pyramid, the searched results
contain the pyramid images from different views and distances,
and the sphinx which is co-located with the pyramid is

Query image Matched results

St. Marks 
Square
(Italy)

Pyramid
(Egypt)

The Leaning 
Tower of Pisa
(Italy)

Palmyra
(Syria)

Jungfrau
(Switzerland)

Fig. 9: Sample search results of InstantCryptoGram

also included. Simply put, while we “aggressively” perform
dimension reduction for efficiency, the retrievals are still robust
to changes in image scale, noise, illumination, and viewpoint,
preserving the nice properties of the SIFT representation.

VI. CONCLUSION

InstantCryptoGram, our secure image retrieval service, uses
an inverted-index for the pre-screening, and secure two-party
computation of simple functions including comparison and
Hamming distance for similarity test. Our experiments con-
firmed that its accuracy is high and its overheads are acceptable
for large-scale data. With its modular design, the performance
can be improved with better and optimized building blocks.

Our work based on a basic IR principle that an efficient
search must prune as many irrelevant results as possible in
the first stage. It is interesting to consider other image retrieval
techniques such as decision trees [31] and neural networks [20]
over encrypted data, while achieving acceptable efficiency.
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APPENDIX

1) Garbled Circuits: Yao [24] proposed garbled circuits for
secure two-party computation. It allows two parties holding
inputs x and y, respectively, to jointly evaluate f(x, y) for an
arbitrary function f represented as a boolean circuit. In details,
one party builds the garbled circuit of f by associating each
wire with two cryptographic keys (called the wire label), and
encrypting the labels of its outgoing wires using an appropriate
combination of the two input wire labels, according to the truth
table of the gate. The other party obtains via OT the input wire
labels without leaking which. It can then decrypt the output
value at exactly one outgoing wire and hence evaluate the
entire circuit gate-by-gate to obtain f(x, y). No party learns
anything about x and y beyond what is implied by f(x, y).

Fig. 10 shows the two (garbled) circuits used in our experi-
ment basing on three atomic circuits [3], [25]. SUB outputs the
difference of the two input numbers. XOR returns a bit which
is the logical exclusive-OR of two input bits. HAM outputs
the Hamming distance between two input binary numbers.

2) Secure Comparison Protocol (SCMP): SCMP works as
follows. For the input data a1 2 Zs and a2 2 Zs, SS first
selects an random integer r 2 Zm (m > s), then computes
Ja1�a2+rK, and sends the ciphertext to CS . CS can therefore
decrypts the ciphertext to obtain a1 � a2 + r. Then SS and
CS collaboratively execute the circuit in Fig. 10 (a), where SS

takes as input (r�2s) and CS takes as input (a1�a2+r). We
use a SUB circuit to obtain s-bit (a1 � a2 + 2s), whose most
significant bit indicates the relationship between a1 and a2.
By taking it and 0 as two inputs for an XOR circuit, we can
obtain a bit x, which is equal to 1 when a1 > a2, 0 otherwise.

3) Secure Hamming Distance Protocol (SHAM): SS first
chooses two random number r1, r2 2 Zm, and adds these
random numbers to Ja1K and Ja2K, then Ja1+r1K and Ja1+r2K
are transferred to CS . We implement the SHAM circuit in
Fig. 10 (b) to compute the Hamming distance between a1 and
a2, where SS takes as input r1 and r2, and CS takes as input
(a1+r1) and (a2+r2). We first use two SUB circuits to obtain
a1 and a2. Subsequently, we apply HAM circuit resulting an
h-bit output x which is the Hamming distance of a1 and a2.


